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The recently introduced hills method (Proc. Natl. Acad. Sci. U.S.A.2002, 99, 12562) is a powerful tool to
compute the multidimensional free energy surface of intrinsically concerted reactions. We have extended this
method by focusing our attention on localizing the lowest free energy path that connects the stable reactant
and product states. This path represents the most probable reaction mechanism, similar to the zero temperature
intrinsic reaction coordinate, but also includes finite temperature effects. The transformation of the
multidimensional problem to a one-dimensional reaction coordinate allows for accurate convergence of the
free energy profile along the lowest free energy path using standard free energy methods. Here we apply the
hills method, our lowest free energy path search algorithm, and umbrella sampling to the prototype SN2
reaction. The hills method replaces the in many cases difficult problem of finding a good reaction coordinate
with choosing relatively simple collective variables, such as the bond lengths of the broken and formed chemical
bonds. The second part of the paper presents a guide to using the hills method, in which we test and fine-tune
the method for optimal accuracy and efficiency using the umbrella sampling results as a reference.

I. Introduction

The intrinsic reaction coordinate (IRC)1,2 is defined as the
steepest descent path on the potential energy surface, in mass-
weighted Cartesian coordinates, that connects the (chemical)
reactant state with the product state. Given the transition state,
the IRC is routinely computed,3-5 and the evolution of a reacting
system along this minimal energy reaction path may thus be
followed. However, finding the transition state in the first place
remains, in many cases, an art. Moreover, when temperature
and entropy effects are important, thefree energy surface has
to be explored so that the transition state cannot be found with
the canonical gradient methods nor is there a straightforward
way to compute a lowest free energy reaction path. Resolving
the reaction paths that lead through the rugged (free) energy
landscape is an important but challenging step in understanding
chemical reaction mechanisms. Much effort has been put into
improving the conventional Newton-Raphson methods to find
saddle points (transition states) by following the local curvature
of the energy surface and to find reaction pathways from
there.6-9 Alternatively, a number of recent developments to find
reaction paths are based on generating and optimizing alternative
routes from an initial path that connects two stable states
(reactants and products).10-18

Techniques to compute reaction free energy profiles, such
as umbrella sampling and constrained molecular dynamics,
depend heavily on an appropriate reaction coordinatesthe lowest
free energy path (or at least a good approximation to it) would
be ideal.19 In practice, one usually has to settle with a chemically
intuitive internal coordinate, for example, a bond length or a

torsion angle. Unfortunately, this approach often fails in
delivering the desired reaction free energy profile since con-
tributions from other internal coordinates are neglected with such
a simple choice for the reaction coordinate. Examples are the
reaction flux result for the NaCl dissociation in aqueous solution
using the Na-Cl bond distance as the reaction coordinate20 and
the constrained molecular dynamics (MD) study of the SN2
reaction between Cl- and CH3Cl in aqueous solution with the
reaction coordinate being a function only of the two C-Cl
distances.21 In both cases, the omission of the solvent degrees
of freedom that describe the activated (de-)solvation of the ions
along the reaction path leads to too low a transition state barrier.
Collective variables that capture the relevant solvent degrees
of freedom would be, for example, the coordination number22

and the local electrostatic field.23 However, adding several
collective variables into a single one-dimensional reaction
coordinate is usually not possible, as their functionality is not
known a priori. Instead, the collective variables should be
sampled independently. Unfortunately, the computational effort
of constrained MD scales exponentially with the dimension, and
for umbrella sampling finding a good one-dimensional biasing
potential is usually already cumbersome, let alone finding a
multidimensional one.

Recently Laio and Parrinello introduced a powerful method
to efficiently compute multidimensional free energy surfaces
as a function of a limited set of collective variables using coarse-
grained non-Markovian MD.24,25 The characteristic feature of
this method, in some way related to the local elevation
technique,26 is the gradual buildup of a history-dependent biasing
potential that discourages the system from revisiting points in
configurational space. The biasing potential thus builds up
rapidly in the local reactant and product wells, allowing the
system to sample the important but unfavorable transition and
intermediate states. The free energy profile is obtained from
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the accumulated biasing potential to arbitrary accuracy using
small enough Gaussian hills.

In the present work, we build on this (hills) method by
localizing the lowest free energy reaction path connecting the
reactant well with the product well in the reduced multidimen-
sional free energy surface obtained with the hills method. The
lowest free energy path (LFEP) is the important property that
describes the most probable reaction mechanism, similar to the
zero temperature IRC, but also includes finite temperature
effects. We employ the LFEP as the reaction coordinate to
perform, now one-dimensional, umbrella sampling, where we
use the multidimensional free energy surface to obtain a good
one-dimensional biasing umbrella potential. Recently, we
reported in a brief communication on this approach applied to
the elimination (E2) reaction between fluoroethane and a
fluoride ion.27 The main advantages of combining the hills
method with umbrella sampling are that (1) the free energy
profile converges usually even faster within one-dimensional
umbrella sampling than with the already efficient multidimen-
sional hills method, (2) the often difficult problem of choosing
a good one-dimensional reaction coordinate is facilitated by
allowing for the independent treatment of relatively simple
collective variables in the hills method from which a good
reaction is generated a posteriori (namely, the LFEP) to be used
in the umbrella sampling, and (3) the second stage umbrella
sampling repairs eventual imperfections introduced in the first
stage hills method due to poor tuning of the hills method
parametrization or violation of the requirement that the dynamic
ionic and collective variable subsystems should be adiabatically
decoupled.

The paper is organized as follows. Section II describes the
hills method, the method used to localize the lowest free energy
reaction path, and the umbrella sampling scheme that uses the
LFEP. Section III presents our main results, where we apply
this three-step scheme to the fundamental SN2 reaction between
Cl- and CH3Cl, once using a single reaction coordinate and
once using two coordinates (collective variables) to compute
the free energy surface. The following section IV is rather
technical and is particularly aimed to guide users of the hills
method. Here, we will use the converged result from section
III to find optimal settings for the hills method’s tuning
parameters, such as the size and shape of the hills and the
frequency of adding them to the biasing potential. Readers not
interested in such technical detail can skip section IV. In the
conclusions (section V), we summarize our findings and present
a recipe for efficient computation of free energy profiles and
reaction paths for intrinsically multidimensional transformations.

II. Methods

A. Hills Method. The aim of the hills method is to efficiently
explore the free energy surfaceF(s) of a limited set of collective
variablessR (e.g., bond lengths, angles, coordination numbers,
etc.). The free energy is commonly written as

with kB Boltzmann’s constant,T the absolute temperature, and
Z the partition function

with H(r ) the Hamiltonian. The delta function can be replaced

by an exponential

Molecular dynamics simulation is used to evaluate this
integral and to enhance the sampling overs; we introduce a
fictitious particlesR for each collective variable and employ an
extended Lagrangian technique. The present example utilizes
density functional theorty (DFT)-based electronic structure
calculations via Car-Parrinello molecular dynamics28 (CPMD).
The augmented Lagrangian is thus

The second term on the right-hand side is the total kinetic energy
of the fictitious particles, which for large enough massesµR
are adiabatically separated from the ionic and electronic degrees
of freedom. Each fictitious particlesR is connected to its actual
collective variableS(r ) by a harmonic spring. For large enough
force constantskR, the springs restrain the molecular configu-
ration close to the slowly moving particlessR. The total potential
energy of the harmonic springs gives rise to the third right-
hand-side term in eq 4. The last term is the history-dependent
biasing potential25

wheresi ) {sR(ti)}. V(t,s) describes a slowly growing discretized
multidimensional Gaussian tube, with its axis along the trajec-
tory. This biasing potential is a sum of repulsive Gaussian-
shaped potentialhills, each with heightH (although in the
original paper25 H is an adaptive parameter that adjusts to the
underlying energy landscape during the simulation). In eq 5,
the first spherical Gaussian, with width∆W⊥, is multiplied with
a second Gaussian, with a width∆Wi

| ) |si+1 - si| that thus
depends on the displacement between the potential hills added
at ti andti+1, such that subsequently added potential hills close
to each other are narrowed in the direction of the trajectory.

In practice, one starts a simulation without adding hills so
that V(t,s) ) 0 and the molecular system and the fictitious
particles fluctuate in one of the free energy wells, e.g., the
reactant well. The fluctuations ofsR give an indication of the
width of the well from which the width∆W⊥ of the Gaussian
hills can be chosen. Themetadynamics ofsR determines the
efficiency at which the free energy surface is being explored.
Then, potential hills are added to the history-dependent potential,
V(t,s), with a meta-time step that is one or two orders larger
than the MD time step. The potential discourages the system to
revisit points in configurational space and rapidly builds up in
the reactant state, until it counter-balances the underlying free
energy well so that the system can escape via the lowest
transition state to the next local (product) minimum. When all
the local free energy minima are “filled up” with hills, the
system can move freely from the reactant state to the product
states. Continuing with smaller hills (Hi) results in better
resolution so that the multidimensional free energy surfaceF(s)
is obtained to arbitrary accuracy as the negative ofV(t,s).

B. Localizing the Lowest Free Energy Path.From the
N-dimensional free energy surface obtained from a simulation
using the hills method, we locate the minima associated with

F(s) ) - kBT ln[Z(s)] (1)

Z(s) ) 1
Z∫ dr eH(r )/kBT δ(s(r ) - s′) (2)

Z(s) ) lim
kf∞

1
Nk

1
Z∫ dr eH(r )/kBT e-k(s(r )-s′)2

(3)

L ) LCPMD + ∑
R

1

2
µRs̆2

R - ∑
R

1

2
kR(SR(r ) - sR)2 - V(t,s)

(4)

V(t,s) ) ∑
ti<t

H exp[-
(s - si)2

2(∆W⊥)2] exp[-
((si+1 - si)(s - si))2

2(∆Wi
|| )4 ]

(5)
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the stable reactant and product states as well as the connecting
lowest free energy reaction paths. Figure 1 shows an illustrative
contour plot of a 2D free energy surface as a function of two
collective variabless1 ands2. The reactant well is denoted A,
and the two product wells are labeled B and C. Locating the
lowest free energy path (LFEP) that connects states A and B,
for example, starts with finding the two minima. Good guesses
for the locations of the minimasA andsB are readily obtained
from the collective variable dynamics during the hills method
simulation, as the collective variables spend most of the time
fluctuating around these locations while the minima are being
“filled up” with hills. Since the free energy surface can be locally
bumpy depending on the convergence of the hills method and
the size and shape of the potential hills used, computing the
derivative∂V(s)/∂sR is not very useful. Instead we minimizeV(s)
starting from the initial guess, by choosing a bracket [sR - δsR,
sR + δsR] for which V(sR) < V(sR - δsR) andV(sR) < V(sR +
δsR) (V(s) is computed from eq 5). A new points′R is chosen
between the initial pointsR and the bracket endsR ( δsR with
the largest potential using the “golden section method”.29 If V(sR)
< V(s′R), then s′R replaces the bracket end with the lower
potential, otherwisesR replaces the bracket end with the higher
potential ands′R becomes the improved minimumsR. This is
repeated by again taking a new points′R and so forth untilV(sR)
- V(s′R) is smaller than some toleranceVTOL. Convergence is
reached through cycling over all collective coordinatesR,
repeating the minimization untilV(sR) - V(s′R) < VTOL for all
R.

Locating the lowest free energy path from A to B occurs in
two steps. From A, first a coarse path is traced, with a step size
larger than the local bumpiness (i.e., the resolution used in the
hills method to compute theN-dimensional free energy surface)
in the free energy surface. This is illustrated in Figure 1 by the
circle with radius “step size” around the starting minimum. As
our initial guess for the first point on the path, we take the

direction of the vectorAB (the dashed arrow), which leads to
point p′1 on the circle. Then a similar minimization follows
using the bracket method described above, but now constrained
to the circle, by scaling back each new (bracket) point to be on
the circle. This leads to our first point on the path p1, which is
then taken as the starting point for the next point by taking again
a step in the direction of the vectorp1B, etc. If the minimiza-
tion from p′2 leads back to A, then alternatively a step in the
direction of the vectorAp1 from p1 is taken. This process
results in a coarse path from A to B. In the second step, the
path is refined by optimizing points between the coarse line
segments in the direction perpendicular to the path as shown in
the inset in Figure 1. The resulting parametrized pathσt(s) is
the lowest free energy path in collective variable space and for
a good choice of collective variables is also a good approxima-
tion of the lowest free energy path in the molecular configu-
rational space.

The potential along the pointsV(σt) already gives a good
estimate for the one-dimensional free energy profile of the
lowest free energy path in most cases. To find the correct free
energy profile however, we have to take into account the width
of the “valley” through which the path winds, by integrating
the potential over the dimensions perpendicular to the path. This
is readily done by performing an umbrella sampling Monte Carlo
simulation in the reducedN-dimensional collective variable
space (with the sum of hillsV(s) as the underlying free energy
surface), usingV(σt) as the biasing umbrella potential. The
trace•irc program to localize the minima and the connecting
lowest free energy path after a hills method simulation can be
downloaded free of charge from http://www.cmm.upenn.edu/
∼ensing/software. The resulting free energy profileF(σt) will
be used as input to perform umbrella sampling as explained in
the next section.

C. Umbrella Sampling.Once we have a reasonable estimate
of the free energy profile along the lowest free energy pathF(σt),
we can use it as the umbrella potentialU(σt) to perform one-
dimensional umbrella sampling to enhance the sampling of the
activated reaction. Umbrella sampling has advantages over the
multidimensional hills method in that it converges the free
energy more efficiently and that it needs less detailed attention
to perform at maximum efficiency and accuracy. The final free
energy profile after umbrella sampling is recovered from

with P(σt) the probability to find the system atσt. To apply the
umbrella potential to our molecular system during an MD
simulation, we have to compute the forces on the atoms due to
the umbrella

The derivatives of the potential with respect to the collective
variables∇sRU (i.e., the part between curly brackets in eq 8)
are computed a priori (after localizing the LFEP and smoothing
the path σt(s) and the potentialU(σt) to remove spurious
bumpiness; see also the previous section) and are read in from
a file, together with the indext and the collective variables
parametrizing the pathst, at the start of the umbrella sampling
simulation. During the umbrella simulation at each time step,

Figure 1. Finding the lowest free energy path on a 2D free energy
surface from state A to state B, first by taking steps larger than the
local bumpiness leading to points p1, p2, ..., and in the second step
refining the path by optimizing points in between these points,
perpendicular to the coarse path (as shown in the inset).

F(σt) ) - U(σt) - kBT ln[P(σt)] + const (6)

P(σt) ) 1
Z∫ dr e(H(r )+U(σt))/kBT δ(σt(s(r )) - σt′) (7)

fi
U )

∂U(σt)

∂ri

) ∑
R

({∂U(σt)

∂σt

∂σt

∂sR
}∂sR

∂ri
) (8)
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the system finds itself at the reaction coordinate valueσt for
which |s(r) - st| is minimal so that∇sRU can be looked up and
multiplied by ∂sR/∂ri to obtain the forces on the atoms (see
further details in the appendix). Additionally, we can divide
the potential into overlapping windows to make the sampling
of σt more efficient and to allow for parallel sampling.

D. Simulation Details. The computer simulations were
performed using the Car-Parrinello molecular dynamics (CP-
MD)28,30algorithm as implemented in the CPMD program.4 A
fictitious mass ofµe ) 600 au was used for the electron
coefficient dynamics, which allows for a MD time step of 5
atu (0.12 fs). The electronic structure was computed within the
density functional theory (DFT) level of theory using the popular
Becke, Lee, Yang and Parr (BLYP)31,32 gradient corrected
(GGA) exchange-correlation functional. The frozen core ap-
proximation was applied for the 2s electrons of second row
elements and up to 3s for Cl. Troullier-Martins33 pseudopo-
tentials were used for the valence electrons, and the wave
function was expanded in a plane waves basis set up to an
energy cutoff of 70 Ry. A cubic supercell of lengthLbox ) 18
au was used. The interaction between periodic images, due to
the periodicity of plane waves, was canceled using an isolation
technique.34

It is well-known that current GGA functionals underestimate
the intrinsic reaction energy barrier of SN2 reactions,35,21 due
to a spurious delocalization of the exchange hole over the three
(attacking, central carbon, and leaving) atoms in combination
with a very small nondynamical correlation in the transition
state structure. Although hybrid functionals (i.e., DFT exchange
functionals that mix in exact Hartree-Fock exchange) often
show better performance for this notorious case, they cannot
yet be used in combination with a plane wave basis set as is
the case in CPMD. We nevertheless chose to test our method
with the SN2 reaction, because it is such a well-known test case
and we are only interested in showing the efficiency and
convergence of obtaining the reaction path and free energy
surface at the DFT-GGA level of theory.

III. Application: S N2 Reaction between Cl- and CH3Cl

Almost all free energy methods require some chemical
intuition from the user, e.g., to find order parameters that define
the stable states or, as in the traditional methods, define a
reaction coordinate. In many cases, this is an important and
unsolved problem. The proposed three-step scheme (hills
method, LFEP localization, and 1D umbrella sampling) reduces
the problem of finding a reaction coordinate significantly, which
is illustrated by applying the scheme to the prototype SN2
reaction.

The SN2 reaction, shown in Figure 2 for the reaction between
Cl- and CH3Cl, is a well-understood fundamental organic
reaction, ideal to test our free energy method. The free energy
profile is symmetric in this particular example because the
products are the same as the reactants, which provides an
additional check for the performance of our free energy method.
The bonds made and broken are (obviously) the two C-Cl
bonds. A good reaction coordinate in general is one that
describes a reversable path between the stable reactant and

product states and resembles the unstable mode in the transition
state;19 the difference between the two C-Cl bond distances,
rC-Cl - rC-Cl′, is such a reaction coordinate. However, often
identification of a reaction coordinate is a problem, and in such
a case the hills method facilitates the problem because it allows
for the independent treatment of the relevant collective variables,
in this case the two C-Cl bond distances. A good reaction
coordinate can then be located a posteriori and, for example,
applied in a traditional free energy method.

We performed two simulations of this system using the hills
method. In the first simulation, the difference of the C-Cl
distances was taken as a single collective variable. In the second
simulation, the two C-Cl bond distances were treated inde-
pendently as two collective variables. The one-dimensional free
energy profiles were converged with umbrella sampling.

A. Hills Method Using One Collective Variable.Figure 3
shows the dynamics of the “difference of C-Cl distances”
collective variable during the first hills method simulation. The
mass of the collective variable,µR, was 10 amu, and the force
constant of the spring,kR, was 0.05 au (eq 4). Phase space
boundaries in the form of repulsive potentials located atrC-Cl

- rC-Cl′ values equal to-4.0 and 4.0 au prohibited the attacking
Cl and the leaving Cl′ to escape. Initially the width and height
of the Gaussian-shaped potential hills were set to∆W⊥ ) 0.15
au andH ) 0.0005 au (0.314 kcal/mol), respectively. Figure 3
shows that after adding 364 hills the system escapes from the
reactant well over the transition state barrier to the product side
of the reaction. After a total of 771 hills, the product well is
also “filled with hills”, and the system recrosses back to the

Figure 2. SN2 reaction between Cl- and CH3Cl showing the symmetric
transition state and the CH3 conversion of configuration known as the
Walden inversion.

Figure 3. Upper panel: Dynamics of the single collective variable,
rC-Cl - rC-Cl′ as a function of the number of potential hills added to
the system (i.e., meta-time steps). After the addition of 364 hills to the
system, the reactant well is filled, and the system moves to the product
side. After 771 hills, the product well is also filled, and the system can
freely move back and forth. Lower panel: Buildup of the hills at
different stages in the simulation. Note how the profiles become
smoother after having added 771 hills and having switched to adding
smaller hills.
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reactant side. The free energy profile obtained from these 771
hills is shown by the bold black line in the lower panel in Figure
3 of the gradual buildup of the biasing potential. After having
“filled up” the reactant and product wells, we continue the hills
simulation using smaller hills (H ) 0.0002 au (0.126 kcal/mol)).
Note how the subsequent free energy profiles (i.e., of more than
771 hills) are less “bumpy” than the earlier ones in Figure 3
and mainly shift the overall profile downward compared to the
one with 771 hills, without changing the general features.

B. Umbrella Sampling Using the 1D Hills Method Result.
The profile obtained from 771 hills, which is after having “filled
up” the reactant and product wells (and (re-)crossing the
transition state only once), is used to construct the biasing
potential for an umbrella simulation. Since we only have a one-
dimensional free energy surface, we do not yet need to use the
search algorithm described in section II.B to locate the LFEP;
instead we parametrize the LFEP,σt, taking 200 equidistant
points along the single collective variable. This reaction
coordinate is a measure of the progress of the reaction, which
we choose to start atσt ) 0 somewhat “before” the actual
reactant well minimum and end atσt ) 1 somewhat “after” the
product minimum, as shown at the lowerx-axis in Figure 4.
The corresponding collective variable,rC-Cl - rC-Cl′, is taken
as the additional top horizontal axis. The green curve shows
again the free energy profile constructed from 771 Gaussian

hills. The red curve, which is used for the umbrella sampling
biasing potential, shows this profile after smoothing, by taking
a Gaussian weighted running average. Since we are only
interested in increasing the probability of visiting the transition
state by umbrella sampling but not the probability of visiting
the outer regions, we set the biasing potential at the regions
outside the local minima equal to the value of the local minima
(red curve). Three harmonic potentials, centered atσt ) 60,
112, and 150 with a force constant equal tokf ) 6 × 10-6 au
were applied to divide the sampling of the LFEP up into
overlapping windows in order to speed up the umbrella
sampling. The resulting probability functions (eq 7) are shown
in the lower panel of Figure 4. The free energy profile was
recovered using the weighted histogram analysis method
(WHAM)36 and is shown by the black line in the upper panel
of Figure 4. Comparing the free energy profiles obtained with
the hills method with those from the umbrella sampling result
shows that the profile constructed from 771 Gaussian hills (green
line) is in qualitative agreement with the umbrella sampling
benchmark. The sum of 1750 hills (dotted blue line) shows better
comparison with the umbrella sampling result but still exhibits
bumps in the profile of about 1 kcal/mol, even though the height
of the last thousand Gaussian hills was set to 0.126 kcal/mol.
Comparing the computational cost of the two methods is
difficult, since the total simulation time of 30 ps for the hills
simulation (1750) was much shorter than the 50 ps simulation
time per window for the three umbrella sampling simulations,
but the convergence for the free energy profile is much better
for the umbrella sampling compared to that for the hills method.

C. Hills Method Using Two Collective Variables.The result
for the second, now two-dimensional, hills method simulation
is shown in Figure 5. Again we start by adding Gaussian hills
with a height of 0.314 kcal/mol but now switch to adding the

Figure 4. Upper panel: Free energy profiles as a function of the
collective variablerC-Cl - rC-Cl′ (top axis) and along the parametrized
LFEP (bottom axis), resulting from the accumulated 771 hills (green
curve), after smoothing the hills curve (red curve), which is used as
the biasing potential for the umbrella sampling, and the final result
after umbrella sampling (black curve). Note that even after adding 1750
hills (blue dotted curve) convergence to the final result has not yet
been reached. Lower panel: The probability plots resulting from the
umbrella sampling over three windows (solid lines and left-hand-side
axis) and the corresponding harmonic window potentials (dashed lines
and right-hand-side axis) as well as the umbrella potential (blue dashed
line).

Figure 5. Upper panel: Dynamics of the two collective variables,rC-Cl

and rC-Cl′, as a function of the number of potential hills added to the
system. After the addition of 1670 hills to the system, both the reactant
well and the product well are filled. Lower panel: Free energy surface
after adding 1670 hills.
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smaller 0.125 kcal/mol hills after the system crosses the
transition state (where the two C-Cl bond distances are equal)
to the product side, after roughly 500 hills. Due to the higher
dimensionality of the free energy surface of the second run
compared to the first run, it takes many more hills (500 versus
364) to fill up the reactant well. After the continuation of the
addition of the smaller hills, it takes another 1170 hills to fill
the product well, after which the system recrosses to the reactant
state. However, as expected, using the smaller hills results in a
much smoother free energy surface as seen by comparing the
product well with the reactant well in the lower panel in Figure
5. Moreover, the bumpiness of the reactant well led to a
premature escape from the reactant well so that the reactant
well is predicted to be not as deep as the product well.

D. Umbrella Sampling Using the 2D Hills Method Result.
The lower reactant well depth compared to the product well
depth mentioned previously becomes more apparent after we
locate the lowest free energy path,σt, in the 2D free energy
surface and plot the free energy alongσt, as shown by the dashed
line in Figure 6. The umbrella sampling was performed using
the smoothed sum of 1670 hills as the biasing potential (dotted
line) and parallelized by dividing the sampling ofσt into seven
overlapping windows, using harmonic potentials with a force
constant ofkf ) 2.5 × 10-6 au centered atσt ) 20, 55, 90,
125, 160, 195, and 230. After umbrella sampling, we recover
the symmetric free energy profile (solid line) and see that the
product well estimate using the smaller hills is in rather good
comparison, whereas the reactant well depth is underestimated
by the sum of larger hills. The final result of the 2D calculation
compares very well with that of the 1D calculation (compare

Figure 4 to Figure 6). The barrier heigth of 7.6 kcal/mol in the
2D case is slightly lower than the 8.0 kcal/mol barrier of the
1D calculation, which is probably due to the more confined
minima alongσt in the 1D case compared to the 2D case.

IV. Fine-Tuning the Hills Method

The examples of the SN2 reaction in the previous sections
demonstrated, in the first place, that we can explore the relevant
regions of a multidimensional free energy surface very ef-
ficiently using the hills method and, in the second place, that
we can compute the free energy profile along the lowest free
energy reaction path very accurately using an umbrella sampling
scheme. Using the umbrella sampling result for the SN2 reaction
as a reference, we will now focus our attention on the
performance of the hills method. Two factors that are key to
the performance are (1) the collective variable dynamics that
determines the efficiency of the FES exploration (examined in
the next subsection) and (2) the buildup of the history-dependent
biasing potential that determines the convergence of the free
energy profile (section IV.B).

A. Metadynamics of the Collective Variables: Choosing
µr and kr. The dynamics of the collective variables,sR,
governed by the equations of motion derived from eq 4, is
controlled by the masses,µR, and the force constants,kR. The
force constants have to be chosen large enough to keepsR close
to the actual coordinates of the system,S(r ), which is

with S° the minimum of the well. However, a large value for
kR requires a small time step for the integration of the equations
of motion, which makes the simulation more computationally
demanding.

Table 1 shows the fluctuations〈(sR - S(r ))2〉 as a function
of the force constant for the [Cl-‚‚‚ CH3Cl]- complex, using a
collective variable with a mass ofµR ) 100 amu attached to
the “difference of C-Cl distances” coordinate (without adding
potential hills). The fluctuations of this coordinate in the reactant
well are〈(S(r ) - S°)2〉 ≈ 1.2a0

2 at T ≈ 300 K. Clearly, a force
constant ofkR ) 0.0001 does not yield meaningful values for
sR because its deviations from the actual coordinate value,S(r ),
are even larger than the well size. On the other side of the
spectrum, i.e., for a simulation usingkR ) 1.0 and a time step
of 4 au, the total energy is not conserved. The valueskR ) 0.1
andkR ) 0.05 are useful because the fluctuations〈(sR - S(r ))2〉
are small and the total energy remains conserved. Table 1 also
shows that the fluctuations are inversely proportional tokR. In
fact, under the condition of adiabatic separation, if the atomic
system is kept at a temperatureT, then the average value of
1/2(sR - S(r ))2 is equal to1/2kBT, hence

Having established a range of usefulkR values, we will choose
the massµR next. Since the general idea of having the fictitious

Figure 6. Upper panel: Free energy profiles as a function of the
parametrized LFEP resulting from the accumulated 1670 hills (dashed
curve), after smoothing the hills curve (dotted curve), and the final
result after umbrella sampling (sollid curve). The dot-dashed lines
show the C-Cl distances along the LFEP (using the right-hand-side
axis). The LFEP value where therC-Cl lines cross is emphasized by
the vertical dotted line to accentuate the symmetry in the free energy
profile that is only recovered after umbrella sampling. Lower panel:
The probability plots resulting from the umbrella sampling using seven
overlapping windows.

TABLE 1: Average Fluctuation of the Collective Variable sr
around the Instantaneous CoordinateS(r) for Different
Values of the Force Constantkr

kR/au 〈(sR - S(r ))2〉/a0
2

0.0001 1.99
0.05 0.010
0.1 0.0048
1.0 0.00058

〈(sR - S(r ))2〉 , 〈(S(r ) - S°)2〉 (9)

〈(sR - S(r ))2〉 )
kBT

k
(10)
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collective variables within the hills method is to have a slow
and heavy particle that “rolls” over the rugged free energy
landscape, while the relatively fast molecular motions sample
the perpendicular directions,µR should be relatively large, and
the collective variable dynamics ideally should be adiabatically
decoupled from the atomic motions.

In practice however, we have found that the use of large
enough values forµR to ensure adiabatic decoupling makes the
exploration of the free energy surface very slow and compu-
tationally demanding in combination with CPMD. This means
that we have to focus on finding a satisfactory balance between
minimal energy flow between the electronic, ionic, and collec-
tive variable dynamics subsystems on one hand and a workable
efficiency in free energy surface exploration on the other.
Coupling between the collective variable dynamics subsystem
and the relatively cool electronic dynamics subsystem should
nevertheless be avoided at all cost, because heating-up of the
latter causes the electronic wave function to deviate from that
of the ground state, which leads to erroneous forces between
the ions. We will however tolerate a minor nonadiabicity
between ions and collective variable dynamics subsystems for
the benefit of efficiency. This is allowed in our dual scheme,
because possible small deviations in the free energy surface will
be repaired in the umbrella sampling step. Note also that a
certain heating-up of the ionic subsystem cannot be avoided
when adding hills, due to the fact that potential energy is added
to the system with every hill that we add to the biasing potential.
The collective variables continuously pull on the ionic system
as they always roll down a hill. This effect is minimized by
controlling the temperature of both subsystems to fluctuate
around the same target value. For now, we will concentrate on
how to minimize the coupling between the subsystems and in
the next section, when we start adding hills, focus on the
efficiency in exploring the free energy surface as a function of
the chosen massµR.

The effect of the mass on the collective variable,S(r ), and
its fictitious particle,sR, is illustrated by Figure 7, showing the
results for four simulations of the [Cl-‚‚‚CH3Cl]- complex using
the difference of C-Cl distances variable,S(r ) ) rC-Cl - rC-Cl′.
The spring constant wask ) 0.05 au.

For the small massµR ) 1 amu, the motion of the fictious
particlesR is much faster than the vibration ofS(r ) (contrary to
the idea behind the hills method). As we go to larger and larger
masses, the frequency ofsR decreases and deviates more and
more from the relatively fastS(r ) frequency. Note also that the
amplitude of thesR oscillations in the reactant well decrease
with increasingµR. From a frequency analysis of the metady-
namics Hamiltonian, we can derive that the period of the motion

of the collective variables around a stable state equals

Ideally, we want this frequency to be much lower than the
frequencies of the intramolecular vibrations. Figure 8 shows
the vibration spectra of four simulations with the different
masses plus the result of a simulation of the [Cl-‚‚‚CH3Cl]-

complex without the collective variable dynamics (bottom
panel.) For the small massµR ) 1 amu, we find asR peak at
1900 cm-1, between the C-H symmetric and antisymmetric
stretch vibrations. Other peaks appear aroundν ) 600 cm-1 as
sR follows the C-Cl bond stretch vibration. From eq 11, we
know that there is an even faster vibration at 7191 cm-1 that is
very likely to interfere with the electronic dynamics. The
splitting of the C-Cl bond stretch vibration aroundν ) 600
cm-1 (lower panel) into higher and lower vibrations (upper three
panels) is due to the coupling of this vibration with the other,
slower intermolecular C-Cl vibration via the spring attached
to sR. The spectrum from a simulation usingµR ) 5000 amu is
very similar to that ofµR ) 500 amu and therefore not shown.
For µR ) 100 amu and larger, we see that thesR vibration shifts
below the lowest intramolecular vibrations shown in the lowest
panel. Clearly mass values smaller thanµR ) 100 amu should
be avoided for this system.

B. Convergence of the Free Energy Surface: Choosing
H, ∆W⊥, and ∆t. With sound metadynamics of the collective
variables, as controlled by a proper choice ofµR andkR (section
IV.A), the speed and accuracy of the buildup of the history-
dependent biasing potential (i.e., the multidimensional free
energy surface) are determined by the stride between added hills,
∆t, and the height,H, and width,∆W⊥, of the Gaussian-shaped
hills. These three parameters cannot be chosen independently.

In the first place, the larger the size of the hills, the more
time the system needs to relax before the next hill can be added,
thus requiring a larger stride. A stride that is too small can lead
to “hill surfing” as the collective variable continuously rides

Figure 7. Dynamics ofS(r ) ) rC-Cl - rC-Cl′ (red,µR ) 1 amu (mostly
hidden behind the blacksR line); green,µR ) 10 amu; blue,µR ) 100
amu; cyan,µR ) 500 amu) and the fictitious particlesR (black lines)
of the [Cl-‚‚‚CH3Cl]- complex using different massesµR.

Figure 8. Vibration spectra of the [Cl- ‚‚‚CH3Cl]- complex using
different masses for the collective variable (from top to bottomµR )
500, 100, 10, 1 amu and without a collective variable shown at the
bottom).

τR ) xµR

kR
(11)
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the tail of the most recently placed hill, which leads to erroneous
results. In the extreme case, the hills build up to a large spurious
bump before the system can escape to energetically more
favorable regions in collective variable space. However, too
large a stride as well as hills that are too small lower the
efficiency of the phase space exploration.

In the second place, the ratio between the hill height and hill
width determines the “steepness” of the hill. The steeper the
hill, the larger the forces on the collective variables due to the
biasing potential. The maximum force due to a Gaussian-shaped
hill equals

Forces that are too large can lead to problems with the
integration of the equations of motion so that larger masses for
the collective variables or a smaller MD time step have to be
chosen, which again lowers the efficiency of the sampling.
Moreover, in the form of eq 5, the Gaussian hill is multiplied
by a second Gaussian that narrows the (multidimensional)
potential hill further in the direction of the displacement of the
collective variable, which can lead to extreme forces in the case
of small displacements of the collective variable. In our initial
attempts to apply the hills method to the SN2 reaction, this led
to very bumpy and rough free energy surfaces (e.g., Figure 3).
In the following tests, we therefore do not apply the second
Gaussian to narrow the hill (i.e., we use Gaussian hills of fixed
size, independent of the collective variable dynamics), and
second, we control the temperature of the collective variable
by scaling the velocity down if the temperature becomes to high.

We will start by showing the dependence of the buildup of
the hills potential on the stride,∆t. The system is again the
one-dimensional SN2 reaction, and the size of the hills is fixed
at H ) 0.314 kcal/mol andW ) 0.15 au. The efficiency and
accuracy of the buildup is highly dependent on the velocity of
the collective variable (i.e., the time it takes to glide down a

hill before the next hill can be added) so that we show the results
for different masses,µR, of 10, 100, and 500 amu (Figure 9).
The minimal time it takes for the collective variable with
temperatureTR to travel a fractionfW of the width of the hill is
estimated by

For example, for subsequent hills to be separated by1/2W,
usingµR ) 10 amu and assumingTR ) T ) 300 K, the stride
should be at least∆tmin ) 329 atu, which corresponds to 66
MD steps, using a CPMD time step of 5 atu. In the following,
we apply a slightly more advanced stride, by demanding a
minimal number of 50 MD steps and a minimal displacement
from the previous hill∆Smin before adding the next hill. If the
collective variable does not move by∆Smin within a maximum
number of 1000 MD steps, then we also add a hill. In Figure 9,
the top row of panels show the result using a distance criterion
of ∆Smin ) 1/2W. The distribution of the time interval between
subsequent hills (right-hand-side plot) indeed shows a maximum
close to 66 MD steps forµR ) 10 amu (and maxima at 208 and
465 steps forµR ) 100 and 500 amu, respectively), following
eq 13. By use of a distance criterion of∆Smin ) 3/2W, the time
interval distribution is flatter with a peak at 1000 MD steps
using masses of 10 and 100 amu (bottom row, right-hand-side
panel in Figure 9); forµR ) 500 amu the time interval is always
the maximum of 1000 steps (as expected from eq 13,∆tmin )
1400 steps).

The average number of MD steps between subsequent hills,
which results from our choice of mass and distance criterion,
has important effects on the collective variable dynamics. That
is that we see excellent behavior for the collective variable
dynamics using∆Smin ) 3/2W. For example, in the inset in
Figure 9, the green line (µR ) 100 amu) shows the variables
slow motion around the reactant well minimum (its fast vibration

Figure 9. Left-hand-side plots: Buildup of hills after filling up the reactant and product wells compared to the umbrella sampling result (red
dashed line) shown with different masses (black,µR ) 10 amu; red,µR ) 100 amu; blue,µR ) 500 amu) for the collective variable and different
distance criteria for the stride∆Smin (top-row plots,∆Smin )1/2W; bottom-row plots,∆Smin ) 3/2W. Middle plots: dynamics of the collective variable,
s. Right-hand-side plots: Distribution of average number of MD steps between subsequent hills. The inset illustrates the slow oscillations ofs as
the reactant well is filled usingµR ) 100 amu.

fmax ) - H

∆W⊥ e-1/2 (12)

∆tmin ) fWWx µR

kBTR
(13)
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from the interaction with the harmonic spring is not well visible
in this figure) with increasing amplitude until it escapes to the
product side after three oscillations where it repeats the same
behavior. After that, the collective variable recrosses the barrier
back and forth. The sum of hills until the first recrossing, shown
by the green line in the left-hand-side panel (i.e., after 517 hills
and 464 200 MD steps, as listed in Table 2), shows close
resemblance to the umbrella sampling result (red dashed line).
However, the collective variable dynamics using∆Smin ) 1/2W
(top-middle panel) shows spiked dynamics, resulting in poor
free energy surfaces (top-left panel). The latter erratic dynamics
is the result of “hills surfing”. The problem is illustrated in
Figure 10, where we show the height of the “wave front” that
results from partly overlapping hills as a function of the distance
criterion. By the use of∆Smin ) 1/2W, the collective variable
rides a wave that is at least five times higher than the hill height
H. In practice, the front will be even higher due to the use of
a maximum number of MD steps. In fact, the poor free energy
profile in the case of∆Smin ) 3/2W and µR ) 500 amu (blue
line in lower-left panel) is due to the use of a maximum number
of 1000 MD steps. We thus recommend using a distance
criterion of3/2W (or larger but that would be less efficient) and
a maximum number of MD steps criterion of at least 2 times
∆tmin or using eq 13 withfW ) 3/2 to calculate the minimal
value for a fixed stride. Concerning the mass, values lower than
µR ) 100 amu easily cause dramatic nonadiabaticity problems

and require frequent quenching of the electron coefficient
dynamics (section IV.A). Larger masses result in better collec-
tive variable dynamics (using an appropriate distance criterion
and maximum number of MD steps criterion) but require more
MD steps and computer time (Table 2). Keep in mind, however,
that convergence of entropic contributions to the free energy
profile requires careful sampling of many configurations, which
is enhanced by the use of a larger mass.

Next, we show the effects of the width and height of the
hills on the accuracy and efficiency of the calculation of the
free energy profile. The area of a 1D Gaussian hill scales linearly
with the width and height of the hill

It is thus tempting to assume that increasing the size of the hills
will lead to faster buildup of the biasing potential and escape
from the stable states. However, realizing that increasing the
width requires an increase of the stride to avoid hill surfing
and increasing the height requires increasing the width (and
therefore the stride) or decreasing the MD time step to avoid
problems with too large forces on the collective variables, we
understand that the timings do not necessarily improve upon
increasing of the hills size. The bottom rows of Table 2 show
our results for a hills method simulation using a height and width
of H ) 0.314 kcal/mol andW ) 0.60 au and for another
simulation usingH ) 0.628 kcal/mol andW ) 0.30 au. With
the massµR ) 100 amu and the distance criterion∆Smin ) 3/2W,
eq 13 tells us that we need a stride of at least 2.5× 103 MD
steps between subsequent hills (forW ) 0.60 au), so we
increased the maximum number of steps between subsequent
hills to 5000. Indeed, in both cases longer simulation times were
needed to fill up the reactant and product wells (684× 103 and
747× 103 MD steps, see last columns in the table) compared
to that of the simulation using the smaller hills ofH ) 0.314
kcal/mol andW ) 0.15 au (464× 103 MD steps), even though
the number of hills decreases with almost a factor of 4 as
expected from eq 14 (517/145) 3.6 for the case ofH ) 0.314
kcal/mol andW ) 0.60 au; in the case ofH ) 0.628 kcal/mol
andW ) 0.30 au the ratio is lower because too many hills are
added as discussed next). Figure 11 shows that the time interval
between subsequent hills equals most often the maximum of
5000 in the simulations, which means that the anticipated
minimum displacement of∆Smin ) 3/2W is often not reached.
The simulation usingH ) 0.314 kcal/mol andW ) 0.60 au

TABLE 2: Number of Hills and MD Steps Needed for the Metadynamics to Fill Up the 1D SN2 Reactant and Product Wells
(and Recross Back to the Reactant State) Using Different Massesµr, Distance Criteria ∆Smin, and Hill Dimensions, H (kcal/mol)
and W (au)

reactant well product well

∆Smin (au) µR (amu) hills MD steps (× 103) quality hills MD steps (× 103) quality

H ) 0.314,W ) 0.15
10 259 41.5 reasonable 372 55.1 poor

0.075 100 150 48.9 poor 419 126.5 poor
500 207 126.1 reasonable >398 >238 poor

H ) 0.314, W ) 0.15
10 260 147.9 reasonable 455 494.8 poor

0.225 100 263 234.2 good 517 464.2 good
500 285 364.1 reasonablea 668 747.1 poora

H ) 0.314, W ) 0.60
0.225 100 74 346.1 good 145 684.0 good

H ) 0.628, W ) 0.30
0.225 100 91 321.1 reasonable 208 747.5 poor

a Poor qualitity is due to too small a maximum step criterion of 1000 MD steps.

Figure 10. Wave fronts resulting from accumulating hills that were
positioned using different distance criteria. Using a distance of∆ )
0.5× ∆W⊥ between subsequent hills results in a biasing potential that
is 5 times higher than the hill height. As an example, the placement of
the hills using a distance of∆ ) 2 × ∆W⊥ is illustrated in dashed
lines.

A ) ∫-∞

∞
H exp[- 1

2( s
W)2] ds ) HWx2π (14)
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(green lines) nevertheless results in a very reasonable estimate
of the free energy profile. Note that the curve is smoother
compared to the one usingW ) 0.15 (black line). However,
using the higherH ) 0.628 kcal/mol leads to a downward shift
and decreased similarity to the umbrella sampling result of the
free energy profile. The spikes at the reaction coordinate values
of s ) -4 and 4 au are due to the repulsive walls that we apply
at these collective variable values to avoid too great a separation
of the reactants. Apparently the collective variable “sticks” to
these walls (see also the light-blue encircled regions in Figure
11), because the actual system travels beyond the wall before
the spring pulls it back, so that in the meantime hills are being
placed in the neighborhood of the wall that shut in the collective
variable. This effect is enhanced by the use of a larger mass as
was already visible in Figure 9 (note the spikes in the blue lines).
Another effect that leads to decreased accuracy with increased
hill height is that the ability of the hills method to self-heal
artifacts in the free energy surface due to misplaced hills is

decreased by using higher hills, in particular when using hill
heights larger thankBT (0.628 kcal/mol≈ 1kBT).

Finally, we attempt to illustrate the convergence of the free
energy profile to the umbrella sampling result, with a hills
method simulation using a fixed stride of∆t ) 250 MD steps
and a mass ofµR ) 100 amu. We start of with a hill size ofH
) 0.314 kcal/mol andW ) 0.30 au. Figure 12 shows the
metadynamics of the collective variable in the first panel and
the buildup of the free energy profile at different stages during
the simulation in the top-right panel. After the addition of 249
hills, both the reactant and the product wells are apparently
filled, and the system recrosses to the reactant state; the resulting
free energy profile at this stage is indicated by the bold black
line. Note that continuation of the simulation with the same
hill size to sample more recrossings and obtain better statistics
does not improve the free energy profile (see the blue line after
425 hills). Instead we continue the simulation from the stage
of 249 hills after decreasing both the hill height and width toH

Figure 11. Left-hand-side plot: The free energy profile after having filled the reactant and product wells compared to the (arbitrarily shifted)
umbrella sampling result (red dashed line) shown for different heightH and widthW of the hills (see legend). The distance criterion for the stride
was∆Smin ) 3/2W. Middle plot: Dynamics of the collective variable. Right-hand-side plot: Distribution of average number of MD steps between
subsequent hills. Light-blue circles indicate bumps in theH ) 0.628 kcal/mol profile due to “sticking” to the confining repulsive walls (see text
for further detail).

Figure 12. Convergence of the hills method to the umbrella sampling (US) result in three steps. Upper-left panel: Metadynamics of the collective
variable while adding potential hills starting with a hill heightH ) 0.314 kcal/mol (black), switching toH ) 0.126 kcal/mol (red) after 249 hills
and switching finally toH ) 0.063 kcal/mol after a total of 554 hills. Other three panels: Buildup of the free energy potential at different stages
for the three hill heights compared to the US result (red dashed line). Profiles at the switching stages (249 and 554 hills) are bold.
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) 0.126 kcal/mol andW ) 0.15 au, as shown by the red line
in the first panel and the buildup of the profile in the lower-left
panel. Note how in this second part the simulation first repairs
the asymmetry in the profile caused in the first part by adding
hills from s ) -4 to 2 au and then starts to fill in the dent
close tos ) 4 au. After adding a total of 554 hills, we decrease
the hills size once more toH ) 0.063 kcal/mol andW ) 0.10
au until we find the free energy sufficiently converged after
adding a total of 1172 hills in 1172× 250) 293.00 MD steps,
much faster than any of the previous “good quality” hills method
simulations shown in Table 2 and with a simulation time of 35
ps more efficient than the umbrella sampling simulation time
of 3 × 50 ps.

V. Conclusions

The hills method is a powerful method to efficiently explore
a multidimensional free energy surface, based on the buildup
of a history-dependent repulsive biasing potential during a (Car-
Parrinello) MD simulation. We have extended the hills method
with an algorithm that locates the lowest free energy path
connecting the reactant state with the product state in the free
energy landscape obtained with a hills method simulation. The
lowest free energy path indicates the most probable reaction
mechanism followed during a (chemical) reaction, similar to
the intrinsic reaction coordinate (IRC), but also includes the
often important entropy (temperature) effects. Locating the
lowest free energy path transforms the multidimensional problem
of intrinsically concerted reactions back to a one-dimensional
coordinate, which allows for the application of traditional free
energy methods such as constrained MD, steered MD, and
umbrella sampling.

We have applied the hills method to compute one- and two-
dimensional free energy surfaces for the prototype SN2 reaction
between Cl- and CH3Cl. This example showed that the often
difficult problem of choosing a chemically intuitive reaction
coordinate is significantly reduced by the hills method because
it allows for the independent treatment of relatively simple
collective variables, for example, the lengths of the bonds that
are broken and formed during the reaction. A posteriori, the
lowest free energy path can be taken as a good reaction
coordinate. Here, umbrella sampling was employed to converge
the free energy profiles along the lowest free energy paths.

The converged 1D free energy profile obtained with umbrella
sampling allowed for thorough testing of the hills method. This
way, we are able to provide a range of parametrizations for
which the hills method performs accurately and efficiently as
well as identify parameter values that could lead to poor
performance. In particular, nonadiabaticity, hill surfing, and the
continuous addition of (potential) energy to the system with
every added repulsive hill can lead to spurious metadynamics
and erroneous results for the free energy surface.

We propose the following recipe for obtaining the reaction
mechanism and free energy profile (i.e., the essential ingredients
that describe a chemical reaction) for intrinsically multidimen-
sional reactions. First, identify the relevant collective variables
(bond distances, angles, torsion angles, coordination numbers)
that describe the reaction and perform short metadynamics
simulations without adding hills to obtain values for the mass
and spring constants that guarantee healthy (largely adiabatically
decoupled) metadynamics. The amplitudes of the collective
variables in the reactant well indicate the width of the well,
allowing for a hill width to be chosen. Second, perform the
hills method simulation, using a hill height ofH ) 0.2 - 2kBT
(depending on the desired accuracy versus sampling speed) and

a displacement dependent stride∆t based on3/2 hill width or a
fixed stride using eq 13. Decrease the hills size after every
recrossing for free energy convergence. Third, locate the lowest
free energy path to depict the reaction mechanism. Finally,
perform one-dimensional umbrella sampling along the lowest
free energy path to obtain the reaction free energy profile and
reaction barrier to arbitrary accuracy.

Combining the hills method with umbrella sampling unites
the efficient treatment of concerted multidimensional reactions
with the straightforward and accurate calculation of a free energy
profile along a 1D reaction coordinate. Moreover, the shift of
the free energy convergence to the umbrella sampling part leaves
less apprehension toward the fine-tuning of the hills method.
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Appendix A: Derivatives ∇srU after Reduction to One
Dimension

The umbrella sampling algorithm introduced in section II.C,
requires the derivatives of the potential with respect to the
collective variables∇sRU (the part between curly brackets in
eq 8), which we take to be these derivatives at the parametrized
lowest free energy pathσt. This approximation is exact in the
limit of the pathσt(s) being a straight line. Otherwise∂U/∂s(r )
) ∂U/∂sσt‚ω, with ω ) 1 + (∆s/F), a correction for the curvature
of σt(s) depending on the radius of curvatureF, and the
displacement of the system from the lowest free energy path
∆s) |P s(r ) - sσt|. The operatorP projectss(r ) onto the plane
of curvature fors dimensions higher than 2 (as illustrated in
Figure 13). For asdimension equal to 2,P ) 1 for s(r ) located
on the inner side of the curved path andP ) -1 for s(r ) located
on the outer side.
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