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The recently introduced hills metho@roc. Natl. Acad. Sci. U.S.£002 99, 12562) is a powerful tool to
compute the multidimensional free energy surface of intrinsically concerted reactions. We have extended this
method by focusing our attention on localizing the lowest free energy path that connects the stable reactant
and product states. This path represents the most probable reaction mechanism, similar to the zero temperature
intrinsic reaction coordinate, but also includes finite temperature effects. The transformation of the
multidimensional problem to a one-dimensional reaction coordinate allows for accurate convergence of the
free energy profile along the lowest free energy path using standard free energy methods. Here we apply the
hills method, our lowest free energy path search algorithm, and umbrella sampling to the protg2ype S
reaction. The hills method replaces the in many cases difficult problem of finding a good reaction coordinate
with choosing relatively simple collective variables, such as the bond lengths of the broken and formed chemical
bonds. The second part of the paper presents a guide to using the hills method, in which we test and fine-tune

the method for optimal accuracy and efficiency using the umbrella sampling results as a reference.

I. Introduction torsion angle. Unfortunately, this approach often fails in

The intrinsic reaction coordinate (IRE)is defined as the delivering the desired reaction free energy profile since con-
steepest descent path on the potential energy surface, in masgfibutions from other internal coordinates are neglected with such
weighted Cartesian coordinates, that connects the (chemical)a S'”?p'e choice for the reaction coor_dmatg. Examples are_the
reactant state with the product state. Given the transition state,re"?‘Ctlon flux resuit for the NaCl dlssomatlon_ln aqueous solution
the IRC is routinely compute#,® and the evolution of a reacting uhsmg the NQ‘C(!bOﬂ(? dlsltancae as the re:lﬂcgon codordli\%ﬂmds
system along this minimal energy reaction path may thus be the c_onsgame m(; ecg Eér é/ln.amlcs (MD) sltu_y 0 .thhsﬁh
followed. However, finding the transition state in the first place "€action etws_en z?)n_ H . n a_queouls sofutrl]on W'té €
remains, in many cases, an art. Moreover, when temperaturer‘?aCt'On cloor Inate being a function only of the two-
and entropy effects are important, tfree energy surface has distance£! In both cases, the omission of the sol_vent degr_ees
to be explored so that the transition state cannot be found with of freedom that. describe the activated (de-)solygtlon ofthe lons
the canonical gradient methods nor is there a straightforward along the reaction path leads to too low a transition state barrier.
way to compute a lowest free energy reaction path. Resolving Collective variables that capture the relevant solvent degrees
the reaction paths that lead through the rugged (free) energyOf ;reidOIn WIOUI? be, for _ex?mpgleﬁ the coordlgg_tlon nurﬁ’oelr
landscape is an important but challenging step in understandingan the local electrostatic fierd. However, adding several
chemical reaction mechanisms. Much effort has been put into collective variables into a single one-dimensional reaction
improving the conventional NewterRaphson methods to find coordinate is usually not possible, as their functionality is not
saddle points (transition states) by following the local curvature KNown a priori. Instead, the collective variables should be
of the energy surface and to find reaction pathways from sampled mdependently. Unfortunat_ely, th_e compl_Jtatlon_aI effort
theres-9 Alternatively, a number of recent developments to find ©f constrained MD scales exponentially with the dimension, and
reaction paths are based on generating and optimizing alternative©" um.brellla sampling finding a good one-d|men5|onall blgsmg
routes from an initial path that connects two stable states pote_nt_lal IS _usually already cumbersome, let alone finding a
(reactants and product):18 multidimensional one.

Techniques to compute reaction free energy profiles, such Recently Laio and Parrinello introduced a powerful method
as umbrella sampling and constrained molecular dynamics, o efficiently compute multidimensional free energy surfaces
depend heavily on an appropriate reaction coordintite lowest as a function of a limited set of collective variables using coarse-
free energy path (or at least a good approximation to it) would grained non-Markovian MB2> The characteristic feature of
be ideal® In practice, one usually has to settle with a chemically this method, in some way related to the local elevation
intuitive internal coordinate, for example, a bond length or a technique?is the gradual buildup of a history-dependent biasing
potential that discourages the system from revisiting points in

*Par:] of the Shpecial issue “DdaVid chﬁndll(cjeeresélsdchrift”O.| A ( )configurational space. The biasing potential thus builds up
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573-4773. Fax: (215) 573-6233. E-mail: ensing@cmm.upenn.edu. . ! .
* University Of(Pen)nSy|vania_ 9@ P system to sample the important but unfavc_)rat_)le transition and
8 ETH Zurich. intermediate states. The free energy profile is obtained from
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the accumulated biasing potential to arbitrary accuracy using by an exponential
small enough Gaussian hills.
In the present work, we build on this (hills) method by Z(s) = lim ilfdr g DkeT oK) —s)? (3)
localizing the lowest free energy reaction path connecting the ke Ny Z
reactant well with the product well in the reduced multidimen- . . L .
Molecular dynamics simulation is used to evaluate this

sional free energy surface obtained with the hills method. The integral and to enhance the sampling osewe introduce a
lowest free ener ath (LFEP) is the important property that . ~° . ! .
gy path ( ) b property fictitious particles, for each collective variable and employ an

describes the most probable reaction mechanism, similar to the . . -
zero temperature IRC, but also includes finite temperature exten_ded Lag_ranglan technique. The present eX?mp'e utilizes
’ density functional theorty (DFT)-based electronic structure

effects. We employ the LFEP as the reaction coordinate to . ) . .
perform, now one-dimensional, umbrella sampling, where we calculations via CarParrinello molecular dynamiés(CPMD).

use the multidimensional free energy surface to obtain a good The augmented Lagrangian is thus

one-dimensional biasing umbrella potential. Recently, we 1 1

reported in a brief communication on this approach applied to /= _/ppp T+ Z ‘ﬂasza - Z =k (S, (r) — su)2 — V(t,9)
the elimination (E2) reaction between fluoroethane and a @ 2 T 2

fluoride ion2” The main advantages of combining the hills )

method with umbrella sampling are that (1) the free energy The second term on the right-hand side is the total kinetic energy
prOf”e converges Usua”y even faster within one-dimensional of the fictitious partic|es’ which for |arge enough masges
umbrella sampling than with the already efficient multidimen-  are adiabatically separated from the ionic and electronic degrees
sional hills method, (2) the often difficult problem of choosing  of freedom. Each fictitious particlg, is connected to its actual

a good one-dimensional reaction coordinate is facilitated by collective variableS(r) by a harmonic spring. For large enough
allowing for the independent treatment of relatively simple force constants,, the springs restrain the molecular configu-
collective variables in the hills method from which a good ration close to the slowly moving particlas The total potential
reaction is generated a pOSteriOfi (namely, the LFEP) to be Usedenergy of the harmonic Springs gives rise to the third right_

in the umbrella sampling, and (3) the second stage umbrellahand-side term in eq 4. The last term is the history-dependent
sampling repairs eventual imperfections introduced in the first piasing potenti&f

stage hills method due to poor tuning of the hills method . . ' '
parametrization or violation of the requirement that the dynamic (s—9)? (™ —9)(s—9))
ionic and collective variable subsystems should be adiabatically V(t,s) = Z{ Hexg———| expg—
decoupled. = 2(AW)? 2(AVVi”)4

The paper is organized as follows. Section Il describes the (5)
hills method, the method used to localize the lowest free energy , ) ) ) )
reaction path, and the umbrella sampling scheme that uses thavheres = {s,(t)}. V(t,s) describes a slowly growing discretized
LFEP. Section Il presents our main results, where we apply multldlrn.ensllon_al Gaussu’;}n tpbe, with its axis alpng the trajec-
this three-step scheme to the fundameni@ @action between ~ tory. This biasing potential is a sum of repulsive Gaussian-
CI- and CHCI, once using a single reaction coordinate and Shaped potentiahills, each with heightH (although in the
once using two coordinates (collective variables) to compute Ofiginal pape®® H is an adaptive parameter that adjusts to the
the free energy surface. The following section IV is rather underlying energy landscape during the simulation). In eq 5,
technical and is particularly aimed to guide users of the hills the first spherical Gaussian, with widWW”, is multiplied with
method. Here, we will use the converged result from section @ second Gaussian, with a widtW; ' = |s1 — | that thus
Il to find optimal settings for the hills method’s tuning depends on the displacement between the poten'glal hllls added
parameters, such as the size and shape of the hills and thétti andti+1, such that subsequently added potential hills close
frequency of adding them to the biasing potential. Readers nott0 each other are narrowed in the direction of the trajectory.
interested in such technical detail can skip section IV. In the N practice, one starts a simulation without adding hills so
conclusions (section V), we summarize our findings and presentthat V(t.s) = 0 and the molecular system and the fictitious
a recipe for efficient computation of free energy profiles and Particles fluctuate in one of the free energy wells, e.g., the

reaction paths for intrinsically multidimensional transformations. reactant well. The fluctuations @, give an indication of the
width of the well from which the widtlAW" of the Gaussian

Il Method hills can be chosen. Thmetalynamics ofs, determines the
- Methods efficiency at which the free energy surface is being explored.
A. Hills Method. The aim of the hills method s to efficiently \T/he”' po_tﬁm'a' hills are added 0 the h'StOW'depe”d‘;”t polte”t'a"
explore the free energy surfagés) of a limited set of collective h(tlsxhw'tl\/lli? rneta-tlmeTitep that 'ISI gne or two orh ers farger
variabless, (e.g., bond lengths, angles, coordination numbers, than the time step. The potential discourages the system to

etc.). The free energy is commonly written as revisit points in configurational space and rapidly builds up in
w the reactant state, until it counter-balances the underlying free

energy well so that the system can escape via the lowest
transition state to the next local (product) minimum. When all
the local free energy minima are “filled up” with hills, the
with kg Boltzmann's constanf the absolute temperature, and  system can move freely from the reactant state to the product

F(s) = — kg T In[Z(9)] 1)

Z the partition function states. Continuing with smaller hillsH() results in better
resolution so that the multidimensional free energy surfdeg
1 1)K is obtained to arbitrary accuracy as the negativ¥/(05).
Z(9 == [ dre™™ o(s(r) — ¢ 2 . '
S Zf (s(r) ) ) B. Localizing the Lowest Free Energy Path.From the

N-dimensional free energy surface obtained from a simulation
with 7(r) the Hamiltonian. The delta function can be replaced using the hills method, we locate the minima associated with
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direction of the vectoAB (the dashed arrow), which leads to
point g, on the circle. Then a similar minimization follows
using the bracket method described above, but now constrained
to the circle, by scaling back each new (bracket) point to be on
the circle. This leads to our first point on the path which is
then taken as the starting point for the next point by taking again
a step in the direction of the vectptB, etc. If the minimiza-
tion from [, leads back to A, then alternatively a step in the
direction of the vectorAp, from p; is taken. This process
results in a coarse path from A to B. In the second step, the
path is refined by optimizing points between the coarse line
segments in the direction perpendicular to the path as shown in
the inset in Figure 1. The resulting parametrized pa(h) is
the lowest free energy path in collective variable space and for
a good choice of collective variables is also a good approxima-
tion of the lowest free energy path in the molecular configu-
rational space.

The potential along the pointg(a!) already gives a good
estimate for the one-dimensional free energy profile of the
lowest free energy path in most cases. To find the correct free

0 02 04 ' g_é - 0.8 ' 1 ' 12 energy profile however, we have to take into account the width
of the “valley” through which the path winds, by integrating
S, the potential over the dimensions perpendicular to the path. This

Figure 1. Finding the lowest free energy path on a 2D free energy IS readﬂ_y do_ne by performing an umprella samplln_g Mont_e Carlo
surface from state A to state B, first by taking steps larger than the Simulation in the reduced\-dimensional collective variable
local bumpiness leading to points, ., ..., and in the second step  space (with the sum of hillg(s) as the underlying free energy
refining the path by optimizing points in between these points, surface), usingV(c!) as the biasing umbrella potential. The
perpendicular to the coarse path (as shown in the inset). trace_irc program to localize the minima and the connecting
lowest free energy path after a hills method simulation can be

the stable reactant and product states as well as the connectin&own!oade(itfree of rc]:harge Ifromfhttp://www.cmr;.utpen.“.edu/
lowest free energy reaction paths. Figure 1 shows an illustrative ~€NSing/software. The resulting free energy profile’) will
contour plot of a 2D free energy surface as a function of two P€ uSeéd as input to perform umbrella sampling as explained in
collective variabless; ands,. The reactant well is denoted A, € Next sec”t|on. y o o osti

and the two product wells are labeled B and C. Locating the f% L:cmbre aSampflqg.|Once hwel ave a:creasonabe estimate
lowest free energy path (LFEP) that connects states A and B, °f the free energy profile along the lowest nee energy péd),

for example, starts with finding the two minima. Good guesses We can use it as the umbre!la potentiélo’) to perform_one-

for the locations of the minimaa and sz are readily obtained dmensmnal “mbfe“a sampling to gnhance the sampling of the
from the collective variable dynamics during the hills method actlv.aFed regctlon. pmbrella sampllng h.as advantages over the
simulation, as the collective variables spend most of the time Multidimensional hills method in that it converges the free
fluctuating around these locations while the minima are being EN€rgy more efficiently and that it needs less detailed attention
“filed up” with hills. Since the free energy surface can be locally to perform at maximum efficiency and accuracy. The final free

bumpy depending on the convergence of the hills method and M€Y profile after umbrella sampling is recovered from
the size and shape of the potential hills used, computing the t t ¢

derivativedV(s)/ds, is not very useful. Instead we minimixs) F(0) = = U(0) — kT In[P(c)] + const (6)
starting from the initial guess, by choosing a brackgt{ ds,, 1 7

Su + 0] for which V(s,) < V(su — 0%) andV(s,) < V(sy + P(d") =3 [ dr " OTORT 5(5((r)) — o) (7)
0sy) (V(s) is computed from eq 5). A new poiig}, is chosen Z
between the initial poing, and the bracket engl, + ds, with
the largest potential using the “golden section metf8d’ V(s,)

< V(s,), then s, replaces the bracket end with the lower
potential, otherwise, replaces the bracket end with the higher

with P(o!) the probability to find the system at. To apply the
umbrella potential to our molecular system during an MD
simulation, we have to compute the forces on the atoms due to

, . . - the umbrella
potential ands, becomes the improved minimusy. This is
repeated by again taking a new pogftand so forth untiv(s,) () aU(0") 90t] 8,
— V(s,) is smaller than some toleransgo.. Convergence is fiU = = A, Y (8)
reached through cycling over all collective coordinates ar; T 9t 0S,) or,
repeating the minimization unti¥(s,) — V(s,) < Vro. for all
o The derivatives of the potential with respect to the collective

Locating the lowest free energy path from A to B occurs in variablesVgU (i.e., the part between curly brackets in eq 8)
two steps. From A, first a coarse path is traced, with a step sizeare computed a priori (after localizing the LFEP and smoothing
larger than the local bumpiness (i.e., the resolution used in thethe patho!(s) and the potentialU(o!) to remove spurious
hills method to compute thd-dimensional free energy surface) bumpiness; see also the previous section) and are read in from
in the free energy surface. This is illustrated in Figure 1 by the a file, together with the index and the collective variables
circle with radius “step size” around the starting minimum. As parametrizing the pat#, at the start of the umbrella sampling
our initial guess for the first point on the path, we take the simulation. During the umbrella simulation at each time step,
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H HH - H 364 771
. Hy J & ) S ! ]
Cl + /C—CI —» | Cl----- (|: ----- Cl | —» c|—c\‘ + QI 4 _
i " : _3F :
Figure 2. S\2 reaction between Cland CHCI showing the symmetric & 2r 7
transition state and the GHonversion of configuration known as the U i 7
Walden inversion. o ofF =
' olr 7
the system finds itself at the reaction coordinate vattiéor 32 i -
which |s(r) — & is minimal so thatVs,U can be looked up and -3 | -
multiplied by ds,/dr; to obtain the forces on the atoms (see -4 : -
e ; " i . I i I . I .
further de'galls_ in the appe_ndlx)._ Additionally, we can d|V|(_1e 5o 500 1000 1500 2000
the potential into overlapping windows to make the sampling e / Thills placed
of ot more efficient and to allow for parallel sampling. time / [hills placed]
D. Simulation Details. The computer simulations were 0

performed using the CaiParrinello molecular dynamics (CP-
MD)?8:30algorithm as implemented in the CPMD program. -2
fictitious mass ofue. = 600 au was used for the electron
coefficient dynamics, which allows for a MD time step of 5
atu (0.12 fs). The electronic structure was computed within the
density functional theory (DFT) level of theory using the popular

| I I N T SN N

AF / [kcal-mol ]
&
r 1717171717 °vT1T

Becke, Lee, Yang and Parr (BLY®)? gradient corrected -10

(GGA) exchange-correlation functional. The frozen core ap-

proximation was applied for the 2s electrons of second row 12

elements and up to 3s for Cl. TroullieMartins®® pseudopo- 4= L
tentials were used for the valence electrons, and the wave -4 2 0 2 4
function was expanded in a plane waves basis set up to an Teq~Teqp / [aul

energy cutoff of 70 Ry. A cubic supercell of lengthox = 18 ) ) ) ) .
au was used. The interaction between periodic images, due toFigure 3. Upper panel: Dynamics of the single collective variable,

the periodicity of plane waves, was canceled using an isolation €€ ~_ Ic-cr @S @ function of the number of potential hills added to
P yorp ! g the system (i.e., meta-time steps). After the addition of 364 hills to the

tech.nique°’.4 . ) system, the reactant well is filled, and the system moves to the product
It is well-known that current GGA functionals underestimate side. After 771 hills, the product well is also filled, and the system can
the intrinsic reaction energy barrier of S reactions?>2?! due freely move back and forth. Lower panel: Buildup of the hills at

to a spurious delocalization of the exchange hole over the threedifferent stages in the simulation. Note how the profiles become
(attacking, central carbon, and leaving) atoms in combination smoother after having added 771 hills and having switched to adding
with a very small nondynamical correlation in the transition smaller hills.

state structure. Although hybrid functionals (i.e., DFT exchange

functionals that mix in exact ngtri ; O.Ck exchange) often statel® the difference between the two—Cl bond distances,
show better performance for this notorious case, they cannot ; . .
fc—ci — fc—cr, IS such a reaction coordinate. However, often

yet be used in combination with a plane wave basis set as is. e h . . i
. dentification of a reaction coordinate is a problem, and in such
the case in CPMD. We nevertheless chose to test our metho . - .
. . L a case the hills method facilitates the problem because it allows
with the Sy2 reaction, because it is such a well-known test case - . )
. X . o for the independent treatment of the relevant collective variables,
and we are only interested in showing the efficiency and . . - .
o . in this case the two €CI bond distances. A good reaction
convergence of obtaining the reaction path and free energy . -
coordinate can then be located a posteriori and, for example,
surface at the DFT-GGA level of theory. S "
applied in a traditional free energy method.
We performed two simulations of this system using the hills
method. In the first simulation, the difference of the-Cl
Almost all free energy methods require some chemical distances was taken as a single collective variable. In the second
intuition from the user, e.g., to find order parameters that define simulation, the two €CI bond distances were treated inde-
the stable states or, as in the traditional methods, define apendently as two collective variables. The one-dimensional free
reaction coordinate. In many cases, this is an important and energy profiles were converged with umbrella sampling.
unsolved problem. The proposed three-step scheme (hills A. Hills Method Using One Collective Variable. Figure 3
method, LFEP localization, and 1D umbrella sampling) reduces shows the dynamics of the “difference of-Cl distances”
the problem of finding a reaction coordinate significantly, which collective variable during the first hills method simulation. The
is illustrated by applying the scheme to the prototyp€ S  mass of the collective variablg,, was 10 amu, and the force
reaction. constant of the springg,, was 0.05 au (eq 4). Phase space
The Sy2 reaction, shown in Figure 2 for the reaction between boundaries in the form of repulsive potentials locatedcat;
Cl~ and CHCI, is a well-understood fundamental organic — rc—cr values equal te-4.0 and 4.0 au prohibited the attacking
reaction, ideal to test our free energy method. The free energyCl and the leaving Clto escape. Initially the width and height
profile is symmetric in this particular example because the of the Gaussian-shaped potential hills were ses¥d”’ = 0.15
products are the same as the reactants, which provides arau andH = 0.0005 au (0.314 kcal/mol), respectively. Figure 3
additional check for the performance of our free energy method. shows that after adding 364 hills the system escapes from the
The bonds made and broken are (obviously) the tweCC reactant well over the transition state barrier to the product side
bonds. A good reaction coordinate in general is one that of the reaction. After a total of 771 hills, the product well is
describes a reversable path between the stable reactant andlso “filled with hills”, and the system recrosses back to the

product states and resembles the unstable mode in the transition

lll. Application: S N2 Reaction between Ct and CH3ClI
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0 T | T time / [hills placed]
0 0.2 04 0.6 0.8 1
o, / [arbit. units]
AF / [keal/mol]
0.07 — T — 17— 1 7 20
- i windse 1 _.'_| 0
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—_ 0.06 L Y | —  window 2: UM< k (o112 g =
% 0.05 \ window 3 U™ e g asn? | 71 i =4 =
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g L N 103 Sl
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Co02f- N\ AN P
= L % S _§ 9
001 E =
L \I\‘ § /I L g =) r(C-CI') / au 52
0 1 1 =t [ 1 0
0 02 04 0.6 0. 1 Figure 5. Upper panel: Dynamics of the two collective variablesg
o,/ [arbit. units] andrc-cr, as a function of the number of potential hills added to the

system. After the addition of 1670 hills to the system, both the reactant
well and the product well are filled. Lower panel: Free energy surface
after adding 1670 hills.

Figure 4. Upper panel: Free energy profiles as a function of the
collective variablec—ci — rc—cr (top axis) and along the parametrized
LFEP (bottom axis), resulting from the accumulated 771 hills (green

curve), after smoothing the hills curve (red curve), which is used as hills. Th d hich i d for th brell i
the biasing potential for the umbrella sampling, and the final resuit M!'S- 1€ read curve, which 1s used for the umbrella sampling

after umbrella sampling (black curve). Note that even after adding 1750 biasing potential, shows this profile after smoothing, by taking
hills (blue dotted curve) convergence to the final result has not yet a Gaussian weighted running average. Since we are only
been reached. Lower panel: The probability plots resulting from the interested in increasing the probability of visiting the transition
umbrella sampling over t_hree windoyvs (_solid lines ar_1d Ieft-hand-s_ide state by umbrella sampling but not the probability of visiting
axis) _and the cor_respo_ndlng harmonic window potentlal_s (dashed Imesthe outer regions, we set the biasing potential at the regions
and right-hand-side axis) as well as the umbrella potential (blue dashed . . i
line). outside the local minima eqyal to the_value of the local minima
(red curve). Three harmonic potentials, centeredat 60,
reactant side. The free energy profile obtained from these 771112, and 150 with a force constant equakte= 6 x 10°° au
hills is shown by the bold black line in the lower panel in Figure were applied to divide the sampling of the LFEP up into
3 of the gradual buildup of the biasing potential. After having overlapping windows in order to speed up the umbrella
“filled up” the reactant and product wells, we continue the hills sampling. The resulting probability functions (eq 7) are shown
simulation using smaller hilld{ = 0.0002 au (0.126 kcal/mol)).  in the lower panel of Figure 4. The free energy profile was
Note how the subsequent free energy profiles (i.e., of more thanrecovered using the weighted histogram analysis method
771 hills) are less “bumpy” than the earlier ones in Figure 3 (WHAM)38 and is shown by the black line in the upper panel
and mainly shift the overall profile downward compared to the of Figure 4. Comparing the free energy profiles obtained with
one with 771 hills, without changing the general features. the hills method with those from the umbrella sampling result
B. Umbrella Sampling Using the 1D Hills Method Result. shows that the profile constructed from 771 Gaussian hills (green
The profile obtained from 771 hills, which is after having “filled  line) is in qualitative agreement with the umbrella sampling
up” the reactant and product wells (and (re-)crossing the benchmark. The sum of 1750 hills (dotted blue line) shows better
transition state only once), is used to construct the biasing comparison with the umbrella sampling result but still exhibits
potential for an umbrella simulation. Since we only have a one- bumps in the profile of about 1 kcal/mol, even though the height
dimensional free energy surface, we do not yet need to use theof the last thousand Gaussian hills was set to 0.126 kcal/mol.
search algorithm described in section 11.B to locate the LFEP; Comparing the computational cost of the two methods is
instead we parametrize the LFER, taking 200 equidistant  difficult, since the total simulation time of 30 ps for the hills
points along the single collective variable. This reaction simulation (1750) was much shorter than the 50 ps simulation
coordinate is a measure of the progress of the reaction, whichtime per window for the three umbrella sampling simulations,
we choose to start at; = 0 somewhat “before” the actual but the convergence for the free energy profile is much better
reactant well minimum and end at= 1 somewhat “after” the for the umbrella sampling compared to that for the hills method.
product minimum, as shown at the lowesaxis in Figure 4. C. Hills Method Using Two Collective Variables.The result
The corresponding collective variable,-ci — rc—cr, is taken for the second, now two-dimensional, hills method simulation
as the additional top horizontal axis. The green curve shows is shown in Figure 5. Again we start by adding Gaussian hills
again the free energy profile constructed from 771 Gaussianwith a height of 0.314 kcal/mol but now switch to adding the
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~=- sum of 1670 Gaussian hills TABLE 1: Average Fluctuation of the Collective Variable s,
10— smoothed potential for umbrella sampling —— 8 around the Instantaneous CoordinateS(r) for Different
F. [ final frecenergy - Values of the Force Constantk,
8 .. : o R
s T \ & o . ke/au sa — S(r))?2a;
£ 6 Y L\ i B 0.0001 1.99
T ofe N DN LA 0.05 0.010
T 4 S g 4 0.1 0.0048
I e /AR B S S 1.0 0.00058
2f :
. H -3
F \\ ‘I | Figure 4 to Figure 6). The barrier heigth of 7.6 kcal/mol in the
U —— 04 06 08 12 2D case is slightly lower than the 8.0 kcal/mol barrier of the
o,/ [arbit. units] 1D calculation, which is probably due to the more confined
minima alongo: in the 1D case compared to the 2D case.
0.05 — . : . : i i )
. IV. Fine-Tuning the Hills Method
7004~ The examples of the\@ reaction in the previous sections
N ) i demonstrated, in the first place, that we can explore the relevant
20031 " il regions of a multidimensional free energy surface very ef-
50 02' U ) ' ficiently using the hills method and, in the second place, that
%,' we can compute the free energy profile along the lowest free
001 energy reaction path very accurately using an umbrella sampling
' / \ scheme. Using the umbrella sampling result for th2 @action
LA\ | W as a reference, we will now focus our attention on the

0 0.2 0.4 0.6 0.8 1 performance of the hills method. Two factors that are key to
G,/ [arbit. units] the performance are (1) the collective variable dynamics that
Figure 6. Upper panel: Free energy profiles as a function of the determines the gfflClency of the FES explorathn (examined in
parametrized LFEP resulting from the accumulated 1670 hills (dashed the next subsection) and (2) the buildup of the history-dependent
curve), after smoothing the hills curve (dotted curve), and the final biasing potential that determines the convergence of the free
result after umbrella sampling (sollid curve). The ddashed lines energy profile (section 1V.B).
show the CG-Cl distances along the LFEP (using the right-hand-side ~ a Metadynamics of the Collective Variables: Choosing
axis). The LFEP value where thre_¢; lines cross is emphasized by #o and ke The dynamics of the collective variables,,

the vertical dotted line to accentuate the symmetry in the free energy d by th ti f tion derived f 4 i
profile that is only recovered after umbrella sampling. Lower panel: 90Verned by the equations of maotion derived from eq 4, 1S

The probability plots resulting from the umbrella sampling using seven controlled by the masses,, and the force constantl,. The
overlapping windows. force constants have to be chosen large enough tokespse

to the actual coordinates of the systexr,), which is

smaller 0.125 kcal/mol hills after the system crosses the
transition state (where the two-CI bond distances are equal) s, — Sr))°0< [Sr) — $)°0 9)
to the product side, after roughly 500 hills. Due to the higher
dimensionality of the free energy surface of the second run with S the minimum of the well. However, a large value for
compared to the first run, it takes many more hills (500 versus k, requires a small time step for the integration of the equations
364) to fill up the reactant well. After the continuation of the of motion, which makes the simulation more computationally
addition of the smaller hills, it takes another 1170 hills to fill  demanding.
the product well, after which the system recrosses to the reactant Table 1 shows the fluctuatiorigs, — S(r))20as a function
state. However, as expected, using the smaller hills results in aof the force constant for the [Ci-+ CH3Cl]~ complex, using a
much smoother free energy surface as seen by comparing thesollective variable with a mass of, = 100 amu attached to
product well with the reactant well in the lower panel in Figure the “difference of G-Cl distances” coordinate (without adding
5. Moreover, the bumpiness of the reactant well led to a potential hills). The fluctuations of this coordinate in the reactant
premature escape from the reactant well so that the reactanivell are[(S(r) — S)?~ 1.2a,? at T ~ 300 K. Clearly, a force
well is predicted to be not as deep as the product well. constant ofk, = 0.0001 does not yield meaningful values for

D. Umbrella Sampling Using the 2D Hills Method Result. s, because its deviations from the actual coordinate v,
The lower reactant well depth compared to the product well are even larger than the well size. On the other side of the
depth mentioned previously becomes more apparent after wespectrum, i.e., for a simulation usikg = 1.0 and a time step
locate the lowest free energy path, in the 2D free energy of 4 au, the total energy is not conserved. The valyes 0.1
surface and plot the free energy alangas shown by the dashed  andk, = 0.05 are useful because the fluctuatiofss — S(r))20
line in Figure 6. The umbrella sampling was performed using are small and the total energy remains conserved. Table 1 also
the smoothed sum of 1670 hills as the biasing potential (dotted shows that the fluctuations are inversely proportionattoin
line) and parallelized by dividing the sampling@finto seven fact, under the condition of adiabatic separation, if the atomic
overlapping windows, using harmonic potentials with a force system is kept at a temperatufe then the average value of
constant ofks = 2.5 x 1076 au centered aty = 20, 55, 90, Yo(se — S(r))? is equal tol/2kgT, hence
125, 160, 195, and 230. After umbrella sampling, we recover
the symmetric free energy profile (solid line) and see that the o KgT
product well estimate using the smaller hills is in rather good s, — SM)T= ko
comparison, whereas the reactant well depth is underestimated
by the sum of larger hills. The final result of the 2D calculation Having established a range of usdfylvalues, we will choose
compares very well with that of the 1D calculation (compare the masg:, next. Since the general idea of having the fictitious

(10)
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Figure 7. Dynamics ofS(r) =rc-ci — rc-cr (red,uq = 1 amu (mostly |
hidden behind the black, line); greenu, = 10 amu; bluey, = 100 “ =1
amu; cyanu, = 500 amu) and the fictitious partick (black lines) i | ll ' A
of the [CI--*CH3Cl]~ complex using different masses. e, S T AT i b
collective variables within the hills method is to have a slow no coll. variable
and heavy particle that “rolls” over the rugged free energy i
landscape, while the relatively fast molecular motions sample Ffineddicdhl ool 10 0ol
the perpendicular directiong, should be relatively large, and 1000 1500 2000 2500 3000 3500
the collective variable dynamics ideally should be adiabatically v/[em']

deCOUpled. from the atomic motions. Figure 8. Vibration spectra of the [Cl--CH;Cl]~ complex using

In practice however, we have found that the use of large terent masses for the collective variable (from top to botjam=
enough values fou, to ensure adiabatic decoupling makes the 500, 100, 10, 1 amu and without a collective variable shown at the
exploration of the free energy surface very slow and compu- bottom).
tationally demanding in combination with CPMD. This means ) .
that we have to focus on finding a satisfactory balance between©f the collective variables around a stable state equals
minimal energy flow between the electronic, ionic, and collec-
tive variable dynamics subsystems on one hand and a workable . = \/!E
efficiency in free energy surface exploration on the other. o K,
Coupling between the collective variable dynamics subsystem
and the relatively cool electronic dynamics subsystem should Ideally, we want this frequency to be much lower than the
nevertheless be avoided at all cost, because heating-up of thdrequencies of the intramolecular vibrations. Figure 8 shows
latter causes the electronic wave function to deviate from that the vibration spectra of four simulations with the different
of the ground state, which leads to erroneous forces betweenmasses plus the result of a simulation of the FGICH3Cl]
the ions. We will however tolerate a minor nonadiabicity complex without the collective variable dynamics (bottom
between ions and collective variable dynamics subsystems forpanel.) For the small magg, = 1 amu, we find &, peak at
the benefit of efficiency. This is allowed in our dual scheme, 1900 cnt?!, between the EH symmetric and antisymmetric
because possible small deviations in the free energy surface willstretch vibrations. Other peaks appear aroure600 cntt as
be repaired in the umbrella sampling step. Note also that as, follows the C-Cl bond stretch vibration. From eq 11, we
certain heating-up of the ionic subsystem cannot be avoidedknow that there is an even faster vibration at 719T tthat is
when adding hills, due to the fact that potential energy is added very likely to interfere with the electronic dynamics. The
to the system with every hill that we add to the biasing potential. splitting of the C-CI bond stretch vibration aroured = 600
The collective variables continuously pull on the ionic system cm (lower panel) into higher and lower vibrations (upper three
as they always roll down a hill. This effect is minimized by panels) is due to the coupling of this vibration with the other,
controlling the temperature of both subsystems to fluctuate slower intermolecular €CI vibration via the spring attached
around the same target value. For now, we will concentrate onto s,. The spectrum from a simulation usipg = 5000 amu is
how to minimize the coupling between the subsystems and in very similar to that ofx, = 500 amu and therefore not shown.
the next section, when we start adding hills, focus on the Foru, = 100 amu and larger, we see that thevibration shifts
efficiency in exploring the free energy surface as a function of below the lowest intramolecular vibrations shown in the lowest

(11)

the chosen mags,. panel. Clearly mass values smaller than= 100 amu should
The effect of the mass on the collective variats#g,), and be avoided for this system.

its fictitious particle,s,, is illustrated by Figure 7, showing the B. Convergence of the Free Energy Surface: Choosing

results for four simulations of the [C--CH3Cl]~ complex using H, AW, and At. With sound metadynamics of the collective

the difference of € Cl distances variabl&{r) =rc-ci — rc-cr. variables, as controlled by a proper choiceipindk, (section

The spring constant wads= 0.05 au. IV.A), the speed and accuracy of the buildup of the history-

For the small masg, = 1 amu, the motion of the fictious  dependent biasing potential (i.e., the multidimensional free
particles, is much faster than the vibration 8fr) (contrary to energy surface) are determined by the stride between added hills,
the idea behind the hills method). As we go to larger and larger At, and the heightd, and width, AW, of the Gaussian-shaped
masses, the frequency &f decreases and deviates more and hills. These three parameters cannot be chosen independently.
more from the relatively fas¥(r) frequency. Note also that the In the first place, the larger the size of the hills, the more
amplitude of thes, oscillations in the reactant well decrease time the system needs to relax before the next hill can be added,
with increasingu,. From a frequency analysis of the metady- thus requiring a larger stride. A stride that is too small can lead
namics Hamiltonian, we can derive that the period of the motion to “hill surfing” as the collective variable continuously rides
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Figure 9. Left-hand-side plots: Buildup of hills after filling up the reactant and product wells compared to the umbrella sampling result (red
dashed line) shown with different masses (black= 10 amu; redu, = 100 amu; bluey, = 500 amu) for the collective variable and different
distance criteria for the strid&S"" (top-row plots AS"" =%/,W; bottom-row plotsAS"" = 3/,W. Middle plots: dynamics of the collective variable,

s. Right-hand-side plots: Distribution of average number of MD steps between subsequent hills. The inset illustrates the slow oscilatons of

the reactant well is filled using, = 100 amu.

the tail of the most recently placed hill, which leads to erroneous hill before the next hill can be added) so that we show the results
results. In the extreme case, the hills build up to a large spuriousfor different massesy,, of 10, 100, and 500 amu (Figure 9).
bump before the system can escape to energetically moreThe minimal time it takes for the collective variable with
favorable regions in collective variable space. However, too temperaturd, to travel a fractiorfy of the width of the hill is
large a stride as well as hills that are too small lower the estimated by
efficiency of the phase space exploration.

In the second place, the ratio between the hill height and hill _ 1
width determines the “steepness” of the hill. The steeper the At™ =, W 2 (13)
hill, the larger the forces on the collective variables due to the ks Tq
biasing potential. The maximum force due to a Gaussian-shaped
hill equals

For example, for subsequent hills to be separated/4w,
usingu, = 10 amu and assuming, = T = 300 K, the stride
fmax _ _ H o 12 (12) should be at leasht™ = 329 atu, which corresponds to 66
AW MD steps, using a CPMD time step of 5 atu. In the following,
we apply a slightly more advanced stride, by demanding a
Forces that are too large can lead to problems with the minimal number of 50 MD steps and a minimal displacement
integration of the equations of motion so that larger masses for from the previous hilAS"" before adding the next hill. If the
the collective variables or a smaller MD time step have to be collective variable does not move B8"" within a maximum
chosen, which again lowers the efficiency of the sampling. number of 1000 MD steps, then we also add a hill. In Figure 9,
Moreover, in the form of eq 5, the Gaussian hill is multiplied the top row of panels show the result using a distance criterion
by a second Gaussian that narrows the (multidimensional) of AS"" = 1/,W. The distribution of the time interval between
potential hill further in the direction of the displacement of the subsequent hills (right-hand-side plot) indeed shows a maximum
collective variable, which can lead to extreme forces in the case close to 66 MD steps fqr, = 10 amu (and maxima at 208 and
of small displacements of the collective variable. In our initial 465 steps fop, = 100 and 500 amu, respectively), following
attempts to apply the hills method to thg23eaction, this led eq 13. By use of a distance criterion 48" = 3/,W, the time
to very bumpy and rough free energy surfaces (e.qg., Figure 3).interval distribution is flatter with a peak at 1000 MD steps
In the following tests, we therefore do not apply the second using masses of 10 and 100 amu (bottom row, right-hand-side
Gaussian to narrow the hill (i.e., we use Gaussian hills of fixed panel in Figure 9); for, = 500 amu the time interval is always
size, independent of the collective variable dynamics), and the maximum of 1000 steps (as expected from egAl3n =
second, we control the temperature of the collective variable 1400 steps).
by scaling the velocity down if the temperature becomes to high.  The average number of MD steps between subsequent hills,
We will start by showing the dependence of the buildup of which results from our choice of mass and distance criterion,
the hills potential on the strideAt. The system is again the has important effects on the collective variable dynamics. That
one-dimensional & reaction, and the size of the hills is fixed is that we see excellent behavior for the collective variable
atH = 0.314 kcal/mol andV = 0.15 au. The efficiency and  dynamics usingAS"™n = 3/,W. For example, in the inset in
accuracy of the buildup is highly dependent on the velocity of Figure 9, the green lineuf, = 100 amu) shows the variables
the collective variable (i.e., the time it takes to glide down a slow motion around the reactant well minimum (its fast vibration



6684 J. Phys. Chem. B, Vol. 109, No. 14, 2005 Ensing et al.

TABLE 2: Number of Hills and MD Steps Needed for the Metadynamics to Fill Up the 1D &2 Reactant and Product Wells
(and Recross Back to the Reactant State) Using Different Masses,, Distance Criteria AS™", and Hill Dimensions, H (kcal/mol)
and W (au)

reactant well product well
AS"" (au) o (@amu) hills MD stepsx 10%) quality hills MD steps & 10°) quality
H=0.314W=0.15
10 259 41.5 reasonable 372 55.1 poor
0.075 100 150 48.9 poor 419 126.5 poor
500 207 126.1 reasonable >398 >238 poor
H=0.314, W=0.15
10 260 147.9 reasonable 455 494.8 poor
0.225 100 263 234.2 good 517 464.2 good
500 285 364.1 reasonable 668 747.1 pocr
H = 0.314, W= 0.60
0.225 100 74 346.1 good 145 684.0 good
H = 0.628, W=0.30
0.225 100 91 321.1 reasonable 208 747.5 poor

aPoor qualitity is due to too small a maximum step criterion of 1000 MD steps.

b—— T 71— 1 T and require frequent quenching of the electron coefficient
- Stride§0.5 * width 1 dynamics (section IV.A). Larger masses result in better collec-
= 5 n tive variable dynamics (using an appropriate distance criterion
2 i and maximum number of MD steps criterion) but require more
= 4 ] MD steps and computer time (Table 2). Keep in mind, however,
E 3 | stride = 1.0 * width B that convergence of entropic contributions to the free energy
S i profile requires careful sampling of many configurations, which
E oL stride £ 1.5 % widt _ is enhanced by the use of a larger mass.
< Fside=2.0 * widiha - Next, we show the effects of the width and height of the
> S e e . hills on the accuracy and efficiency of the calculation of the
LN :\\ //\:\\*\ ) 1 frge energy profile. Thg area of a 1[? Gaussian hill scales linearly
0_3‘ o 1 0 1 > with the width and height of the hill
meta-steps / [hills] . s
Figure 10. Wave fronts resulting from accumulating hills that were A= ./Loo H eXF{— E(V_V)zl ds=HW /27 (24)

positioned using different distance criteria. Using a distanca of

0.5 x AW between subsequent hills results in a biasing potential that |, . . . . . .
is 5 times higher than the hill height. As an example, the placement of Itis thus tempting to assume that increasing the size of the hills

the hills using a distance ok = 2 x AW is illustrated in dashed  Will lead to faster buildup of the biasing potential and escape
lines. from the stable states. However, realizing that increasing the
width requires an increase of the stride to avoid hill surfing
from the interaction with the harmonic spring is not well visible and increasing the height requires increasing the width (and
in this figure) with increasing amplitude until it escapes to the therefore the stride) or decreasing the MD time step to avoid
product side after three oscillations where it repeats the sameproblems with too large forces on the collective variables, we
behavior. After that, the collective variable recrosses the barrier understand that the timings do not necessarily improve upon
back and forth. The sum of hills until the first recrossing, shown increasing of the hills size. The bottom rows of Table 2 show
by the green line in the left-hand-side panel (i.e., after 517 hills our results for a hills method simulation using a height and width
and 464 200 MD steps, as listed in Table 2), shows close of H = 0.314 kcal/mol andW = 0.60 au and for another
resemblance to the umbrella sampling result (red dashed line).simulation usingd = 0.628 kcal/mol andV = 0.30 au. With
However, the collective variable dynamics usihg"" = 1/,wW the masgi, = 100 amu and the distance criteriai$"n = 3/,W,
(top-middle panel) shows spiked dynamics, resulting in poor eq 13 tells us that we need a stride of at least2.50° MD
free energy surfaces (top-left panel). The latter erratic dynamicssteps between subsequent hills (f = 0.60 au), so we
is the result of “hills surfing”. The problem is illustrated in increased the maximum number of steps between subsequent
Figure 10, where we show the height of the “wave front” that hills to 5000. Indeed, in both cases longer simulation times were
results from partly overlapping hills as a function of the distance needed to fill up the reactant and product wells (6840° and
criterion. By the use ofAS"n = 1/,W, the collective variable 747 x 10° MD steps, see last columns in the table) compared
rides a wave that is at least five times higher than the hill height to that of the simulation using the smaller hills ldf= 0.314
H. In practice, the front will be even higher due to the use of kcal/mol andW = 0.15 au (464x 10° MD steps), even though
a maximum number of MD steps. In fact, the poor free energy the number of hills decreases with almost a factor of 4 as
profile in the case oAS"" = 3,W andu, = 500 amu (blue expected from eq 14 (517/145 3.6 for the case dfl = 0.314
line in lower-left panel) is due to the use of a maximum number kcal/mol andW = 0.60 au; in the case d¢f = 0.628 kcal/mol
of 1000 MD steps. We thus recommend using a distance andW = 0.30 au the ratio is lower because too many hills are
criterion of3/,W (or larger but that would be less efficient) and added as discussed next). Figure 11 shows that the time interval
a maximum number of MD steps criterion of at least 2 times between subsequent hills equals most often the maximum of
AtMn or using eq 13 withfyy = 3/, to calculate the minimal 5000 in the simulations, which means that the anticipated
value for a fixed stride. Concerning the mass, values lower than minimum displacement aAS"" = 3/,W is often not reached.
e = 100 amu easily cause dramatic nonadiabaticity problems The simulation usingd = 0.314 kcal/mol andV = 0.60 au
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Figure 11. Left-hand-side plot: The free energy profile after having filled the reactant and product wells compared to the (arbitrarily shifted)
umbrella sampling result (red dashed line) shown for different heighind widthW of the hills (see legend). The distance criterion for the stride
wasAS"" = 3,W. Middle plot: Dynamics of the collective variable. Right-hand-side plot: Distribution of average number of MD steps between
subsequent hills. Light-blue circles indicate bumps inlkhe= 0.628 kcal/mol profile due to “sticking” to the confining repulsive walls (see text

for further detail).
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Figure 12. Convergence of the hills method to the umbrella sampling (US) result in three steps. Upper-left panel: Metadynamics of the collective
variable while adding potential hills starting with a hill height= 0.314 kcal/mol (black), switching tBl = 0.126 kcal/mol (red) after 249 hills

and switching finally toH = 0.063 kcal/mol after a total of 554 hills. Other three panels: Buildup of the free energy potential at different stages
for the three hill heights compared to the US result (red dashed line). Profiles at the switching stages (249 and 554 hills) are bold.

(green lines) nevertheless results in a very reasonable estimatelecreased by using higher hills, in particular when using hill
of the free energy profile. Note that the curve is smoother heights larger thaksT (0.628 kcal/mol~ 1kgT).

compared to the one using = 0.15 (black line). However, Finally, we attempt to illustrate the convergence of the free
using the higheH = 0.628 kcal/mol leads to a downward shift energy profile to the umbrella sampling result, with a hills
and decreased similarity to the umbrella sampling result of the method simulation using a fixed stride At = 250 MD steps

free energy profile. The spikes at the reaction coordinate valuesand a mass of, = 100 amu. We start of with a hill size &

of s=—4 and 4 au are due to the repulsive walls that we apply = 0.314 kcal/mol andW = 0.30 au. Figure 12 shows the

at these collective variable values to avoid too great a separationmetadynamics of the collective variable in the first panel and
of the reactants. Apparently the collective variable “sticks” to the buildup of the free energy profile at different stages during
these walls (see also the light-blue encircled regions in Figure the simulation in the top-right panel. After the addition of 249
11), because the actual system travels beyond the wall beforehills, both the reactant and the product wells are apparently
the spring pulls it back, so that in the meantime hills are being filled, and the system recrosses to the reactant state; the resulting
placed in the neighborhood of the wall that shut in the collective free energy profile at this stage is indicated by the bold black
variable. This effect is enhanced by the use of a larger mass adine. Note that continuation of the simulation with the same
was already visible in Figure 9 (note the spikes in the blue lines). hill size to sample more recrossings and obtain better statistics
Another effect that leads to decreased accuracy with increaseddoes not improve the free energy profile (see the blue line after
hill height is that the ability of the hills method to self-heal 425 hills). Instead we continue the simulation from the stage
artifacts in the free energy surface due to misplaced hills is of 249 hills after decreasing both the hill height and widtfto
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= 0.126 kcal/mol andV = 0.15 au, as shown by the red line
in the first panel and the buildup of the profile in the lower-left
panel. Note how in this second part the simulation first repairs .
the asymmetry in the profile caused in the first part by adding QO \
hills from s = —4 to 2 au and then starts to fill in the dent )

close tos = 4 au. After adding a total of 554 hills, we decrease
the hills size once more td = 0.063 kcal/mol andV = 0.10 6
au until we find the free energy sufficiently converged after
adding a total of 1172 hills in 1172 250= 293.00 MD steps,
much faster than any of the previous “good quality” hills method
simulations shown in Table 2 and with a simulation time of 35
ps more efficient than the umbrella sampling simulation time
of 3 x 50 ps.

V. Conclusions

The hills method is a powerful method to efficiently explore
a multidimensional free energy surface, based on the buildup
of a history-dependent repulsive biasing potential during a{Car
Parrinello) MD simulation. We have extended the hills method
with an algorithm that locates the lowest free energy path
connecting the reactant state with the product state in the freeFigure 13. A curved parametrized pait in 3D collective variable
energy landscape obtained with a hills method simulation. The space, with two example poinggr) (open circles) of systems finding
lowest free energy path indicates the most probable reactionthemselves at a reaction coordinate vaﬂ.lé'_ he local plane of curvature
mechanism followed during a (chemical) reaction, similar to at¢' is the one through%, ¢!, ando** (i.e., thes;s; plane in this
the intrinsic reaction coordinate (IRC), but also includes the Cas?)' The radius of curvatureps_ .
often important entropy (temperature) effects. Locating the 2 displacement dependent stritiebased or¥/, hill width or a
lowest free energy path transforms the multidimensional problem fixed St,”de using eq 13. Decrease the h|_IIs size after every
of intrinsically concerted reactions back to a one-dimensional "€crossing for free energy convergence. Third, locate the lowest

coordinate, which allows for the application of traditional free T€€ €nergy path to depict the reaction mechanism. Finally,
energy methods such as constrained MD, steered MD, angpPerform one-dlmensmna_l umbrella §ampl|ng along the I_owest
umbrella sampling. free energy path to obtain the reaction free energy profile and

We have applied the hills method to compute one- and two- re%ctlor;'b'arrlet:] toh"."”rb'tra% aé:cu.rt?]cy. brell i it
dimensional free energy surfaces for the prototyp 1@action ombining the hills method with umbrefia sampling unites
between Ct and CHC. This example showed that the often th_e efﬂment_treatment of concerted multldlm_ensmnal reactions
difficult problem of choosing a chemically intuitive reaction with the straightforward and accurate calculation of a free energy

coordinate is significantly reduced by the hills method because profile along a 1D reaction coordinate. Moreover_, the shift of
it allows for the independent treatment of relatively simple the free energy convergence to the umbrella sampling part leaves

collective variables, for example, the lengths of the bonds that less apprehension toward the fine-tuning of the hills method.

are broken and formed during the reaction. A posteriori, the Acknowledgment. B.E. thanks Steve O. Nielsen for many

lowest free energy path can be taken as a good reactionpe|sfy| discussions. Computer resources were provided, in part,
coordinate. Here, umbrella sampling was employed to convergepy the pittsburgh Supercomputing Center through the NPACI.
the free energy profiles along the lowest free energy paths.  Financial support by the National Science Foundation (through

The converged 1D free energy profile obtained with umbrella Grant No. CHE-0205146) is gratefully acknowledged.
sampling allowed for thorough testing of the hills method. This

way, we are able to provide a range of parametrizations for Appendix A: Derivatives Vg, U after Reduction to One
which the hills method performs accurately and efficiently as Dimension

well as identify parameter values that could lead to poor  the ymbrella sampling algorithm introduced in section I1.C,
performance. In particular, nonadiabaticity, hill surfing, and the requires the derivatives of the potential with respect to the

continuous addition of (potential) energy to the system with ¢qjlective variablesvs,U (the part between curly brackets in
every added repulsive hill can lead to spurious metadynamics gq g, which we take to be these derivatives at the parametrized
and erroneous results for the free energy surface. lowest free energy patbt. This approximation is exact in the
We propose the following recipe for obtaining the reaction |imit of the patho'(s) being a straight line. Otherwis#J/as(r)
mechanism and free energy profile (i.e., the essential ingredients= gu/ast-c, with w = 1 + (A/p), a correction for the curvature
that describe a chemical reaction) for intrinsically multidimen- ¢ d'(s) depending on the radius of curvatupe and the
sional reactions. First, identify the relevant collective variables gisplacement of the system from the lowest free energy path
(bond distances, angles, torsion angles, coordination numbers)ag— | 2H(r) — . The operator” projectss(r) onto the plane
that describe the reaction and perform short metadynamicsof curvature fors dimensions higher than 2 (as illustrated in
simulations without adding hills to obtain values for the mass Figure 13). For & dimension equal to 27 = 1 for §(r) located

and spring constants that guarantee healthy (largely adiabaticallygn the inner side of the curved path art= —1 for S(r) located
decoupled) metadynamics. The amplitudes of the collective gn, the outer side.

variables in the reactant well indicate the width of the well,
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