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as our model system. We use a truncated and shifted potential (see also
section 3.2.2):
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where uli(r) is the Lennard-Jones potential and for these simulations r. =
2.50 is used.

Case Study 4 (Static Properties of the Lennard-Jones Fluid)

Let us start a simulation with 108 particles on a simple cubic lattice. We give
the system an initial temperature T = 0.728 and density p = 0.8442, which is
close to the triple (gas-liquid-solid) point of the Lennard-Jones fluid [81-83].

In Figure 4.3 the evolution of the total energy, kinetic energy, and potential
energy is shown. Itis important to note that the total energy remains constant
and does not show a (slow) drift during the entire simulation. The kinetic
and potential energies do change initially (the equilibration period) but during
the end of the simulation they oscillate around their equilibrium value. This
figure shows that, for the calculation of the average potential energy or kinetic
energy, we need approx. 1000 time steps to equilibrate the simulation. The
figure also shows significant fluctuations in the potential energy, some of
which may take several (100) time steps before they disappear.

Appendix D shows in detail how to calculate statistical error in the data
of a simulation. In this example, we use the method of Flyvbjerg and Pe-
tersen [84]. The following operations on the set of data points are performed:
we start by calculating the standard deviation of all the data points, then we
group two consecutive data points and determine again the standard devia-
tion of the new, blocked, data set. This new data set contains half the number
of data points of the original set. The procedure is repeated until there are
not enough data points to compute a standard deviation; the number of times
we perform this operation is called M. What do we learn from this?

First of all, let us assume that the time between two samples is so large
that the data points are uncorrelated. If the data are uncorrelated the stan-
dard deviation (as calculated according to the formula in Appendix D, i.e.,
correcting for the fact we have fewer data points) should be invariant to this
blocking operation and we should get a standard deviation that is indepen-
dent of M. In a simulation, however, the time between two data points is
usually too short to obtain a statistically independent sample; as a conse-
quence consecutive data points would be (highly) correlated. If we would
calculate a standard deviation using these data, this standard deviation will
be too optimistic. The effect of the block operation will be that after group-
ing two consecutive data points, the correlation between the two new data
points will be less. This, however, will increase the standard deviation; the
data will have more noise since consecutive data points no longer resemble
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Figure 4.3: Total, potential, and kinetic energy per particle U/N as a func-
tion of the number of time steps Nime.

each other that closely. This decrease of accuracy as a function of the num-
ber of blocking operations will continue until we have grouped so many data
points that two consecutive points are really uncorrelated. This is exactly
the standard deviation we want to determine. It is important to note that we
have to ensure that the standard deviations we are looking at are significant;
therefore, we have to determine the standard deviation of the error at the
same time.

The results of this error calculation for the potential energy are shown
in Figure 4.4, as expected, for a low value of M; the error increases until a
plateau is reached. For high values of M, we have only a few data points,
which results in a large standard deviation in the error. The advantage of this
method is that we have a means of finding out whether we have simulated
enough; if we do not find such a plateau, the simulation must have been too
short. In addition we find a reliable estimate of the standard deviation. The
figure also shows the effect of increasing the total length of the simulation by
a factor of 4; the statistical error in the potential energy has indeed decreased
by a factor of 2.

In this way we obtained the following results. For the potential energy
U = —4.4190 £+ 0.0012 and for the kinetic energy K = 2.2564 + 0.0012, the
latter corresponds to an average temperature of T = 1.5043 + 0.0008. For the
pressure, we have obtained 5.16 £ 0.02.

In Figure 4.5, the radial distribution function is shown. To determine this
function we used Algorithm 7. This distribution function shows the charac-
teristics of a dense liquid. We can use the radial distribution function to
calculate the energy and pressure. The potential energy per particle can be
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Figure 4.4: The standard deviation o in the potential energy as a function
of the number of block operations M for a simulation of 150,000 and 600,000
time steps. This variance is calculated using equation (D.3.4).

calculated from
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and for the pressure from
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where u(r) is the pair potential.

Equations (4.5.1) and (4.5.2) can be used to check the consistency of
the energy and pressure calculations and the determination of the radial
distribution function. In our example, we obtained from the radial distribution
function for the potential energy U/N = —4.419 and for the pressure P =
5.181, which is in good agreement with the direct calculation.

Case Study 5 (Dynamic Properties of the Lennard-Jones Fluid)

As an example of a dynamic property we have determined the diffusion coef-
ficient. As shown in the previous section, the diffusion coefficient can be de-
termined from the mean-squared displacement or from the velocity autocor-
relation function. We have determined these properties using Algorithm 8.
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Figure 4.5: Radial distribution function of a Lennard-Jones fluid close to the
triple point: T = 1.5043 £ 0.0008 and p = 0.8442.

In Figure 4.6 the mean-squared displacement is shown as a function of
the simulation time. From the mean-squared displacement we can determine
the diffusion using equation (4.4.9). This equation, however, is valid only in
the limit t — oo. In practice this means that we have to verify that we have
simulated enough that the mean-squared displacement is really proportional
to t and not to another power of t.

The velocity autocorrelation function can be used as an independent
route to test the calculation of the diffusion coefficient. The diffusion co-
efficient follows from equation (4.4.11). In this equation we have to integrate
to t — oo. Knowing whether we have simulated sufficiently to perform this in-
tegration reliably is equivalent to determining the slope in the mean-squared
displacement. A simple trick is to determine the diffusion coefficient as a
function of the truncation of the integration; if a plateau has been reached
over a sufficient number of integration limits, the calculation is probably reli-
able.

Case Study 6 (Algorithms to Calculate the Mean-Squared Displacement)
In this case study, a comparison is made between the conventional (Al-
gorithm 8) and the order-n methods (Algorithm 9) to determine the mean-
squared displacement. For this comparison we determine the mean-squared
displacement of the Lennard-Jones fluid.

In Figure 4.7 the mean-squared displacement as a function of time as
computed with the conventional method is compared with that obtained from
the order-n scheme. The calculation using the conventional scheme could
not be extended to times longer than t > 10 without increasing the number of
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Figure 4.6: (left) Mean-squared displacement Ar(t)? as a function of the
simulation time t. Note that for long times, Ar(t)? varies linearly with t.
The slope is then given by 2dD, where d is the dimensionality of the system
and D the self-diffusion coefficient. (right) Velocity autocorrelation function
(v(0) - v(t)) as a function of the simulation time t.
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Figure 4.7: Mean-squared displacement as a function of time for the
Lennard-Jones fluid (p = 0.844, N = 108, and T = 1.50); comparison of
the conventional method with the order-n scheme .

time steps between two samples because of lack of memory. With the order-
n scheme the calculation could be extended to much longer times with no
difficulty. It is interesting to compare the accuracy of the two schemes. In the
conventional scheme, the velocities of the particles at the current time step
are used to update the mean-squared displacement of all time intervals. In
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Figure 4.8: Relative error in the mean-squared displacement as a function of
the number of data blocks as defined by Flyvbjerg and Petersen. The figures
compare the conventional scheme (solid squares) with the order-n method
(open circles) to determine the mean-squared displacement. The right figure
is for t = 0.1 and the left figure for t = 1.0.

the order-n scheme the current time step is only used to update the lowest-
order array of vs,m (see Algorithm 9). The block sums of level i are updated
only once every n' time step. Therefore, for a total simulation of M time
steps, the number of samples is much less for the order-n scheme; for the
conventional scheme, we have M samples for all time steps, whereas the
order-n scheme has M/n' samples for the ith block velocity. Naively, one
would think that the conventional scheme therefore is more accurate. In the
conventional scheme, however, the successive samples will have much more
correlation and therefore are not independent. To investigate the effect of
these correlations on the accuracy of the results, we have used the method
of Flyvbjerg and Petersen [84] (see Appendix D.3 and Case Study 4). In this
method, the standard deviation is calculated as a function of the number of
data blocks. If the data are correlated, the standard deviation will increase as
a function of the number of blocks until the number of blocks is sufficient that
the data in a data block are uncorrelated. If the data are uncorrelated, the
standard deviation will be independent of the number of blocks. This limiting
value is the standard deviation of interest.

In these simulations the time step was At = 0.001 and the block length
was set to n = 10. For both methods the total number of time steps was
equal. To calculate the mean-squared displacement, we have used 100,000
samples for all times in the conventional scheme. For the order-n scheme,
we have used 100,000 samples for t € [0,0.01], 10,000 for t € [0.01,0.1],
1,000 for fort € [0.1, 1], etc. This illustrates that the number of samples in the
order-n scheme is considerably less than in the conventional scheme. The
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Figure 4.9: Percentage increase of the total CPU time as a function of the total
time for which we determine the mean-squared displacement; comparison
of the conventional scheme with the order-n scheme for the same system as
is considered in Figure 4.7

accuracy of the results, however, turned out to be the same. This is shown
in Figure 4.8 for t = 0.1 and t = 1.0. Since the total number of data blocking
operations that can be performed on the data depends on the total number
of samples, the number of blocking operations is less for the order-n method.
Figure 4.8 shows that for t = 0.1 the order-n scheme yields a standard devi-
ation that is effectively constant after three data blocking operations, indicat-
ing the samples are independent, whereas the standard deviation using the
conventional method shows an increase for the first six to eight data blocking
operations. For t = 1.0 the order-n method is independent of the number of
data blocks, the conventional method only after 10 data blocks. This implies
that one has to average over 2'° ~ 1000 successive samples to have two
independent data points. In addition, the figure shows that the plateau value
of the standard deviation is essentially the same for the two methods, which
implies that for this case the two methods are equally accurate.

In Figure 4.9 we compare the CPU requirements of the two algorithms
for simulations with a fixed total number of time steps. This figure shows the
increase of the total CPU time of the simulation as a function of the total time
for which the mean-squared displacement has been calculated. With the
order-n scheme the CPU time should be (nearly) independent of the total
time for which we determine the mean-squared displacement, which is in-
deed what we observe. For the conventional scheme, however, the required
CPU time increases significantly for longer times. Att = 1.0 the order-n
scheme gives an increase of the total CPU time of 17%, whereas the con-
ventional scheme shows an increase of 130%.



