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2Laboratorio de Qúımica Computacional y Teórica,
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Abstract

This document contain details of the computational methods, as well as additional data of the

electronic structure and optical properties. It also contains the patterns of the infrared and Raman

active phonons, and a description of the structure considered as a double carbon chain.
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I. COMPUTATIONAL DETAILS

Density functional theory (DFT) calculations have been performed using a plane-wave

pseudopotential scheme as implemented in quantum ESPRESSO[1]. The exchange and

correlation parts of the electronic energy were calculated in the generalized gradient approx-

imation (GGA) with the functional of Perdew, Burke and Ernzerhof (PBE)[2]. The effects

of the core electrons and nuclei are included using the Rabe-Rappe-Kaxiras-Joannopoulos[3]

type ultrasoft pseudopotential C.pbe-rrkjus.UPF included in the quantum ESPRESSO

distribution. Kinetic energy cutoffs of 30 and 320 Ry have been used for the expansion of

the wavefunctions and the charge density, respectively. The one-dimensional Brillouin zone

was sampled using a shifted uniform grids of 14 k-points. In order to avoid convergence

problems in some ’metallic’ configurations, the method of cold smearing[4] with a broad-

ening parameter of 0.01 Ry was used. In a recent work[5] on CNT’s we have probed that

the selected cutoffs, k-point grid, and smearing scheme, allow to obtain energies, forces, and

stresses converged within 0.01 eV/atom, 0.05 eV/angstrom and 0.5 kbar, respectively. The

supercell enclosing the CNT has a fixed transversal size of 18 Å, and variable size along

the CNT axis that is 11.15 Å for the converged CNT10R structure. For density of states

(DOS) calculations, a Gaussian smearing of 0.02 eV and a Γ−centered grid of 60 k-points

have been used. The IR and Raman spectra have been calculated using density functional

perturbation theory[6] as implemented in the phonon code of quantum ESPRESSO. This

framework provides accurate phonon frequencies that in the worst cases differ in 50 cm−1

from the experiments. Nonetheless, the average accuracy is far better[6]. The local density

approximation was used, with the norm conserving pseudopotential C.pz-vbc.UPF and a

plane wave cutoff of 60 and 240 Ry for the wavefunctions and density, respectively. For

testing purposes we have computed the IR spectrum for a zigzag CNT (8,0) and we have

obtained an IR spectrum consistent with the results of Ref. 7. The frequencies of the IR

active modes coincide within 1 % and the relative intensities follow the same pattern, the

A2u intensity being 121 and 1.4 × 104 times stronger than the LF-E1u and HF-E1u ones,

respectively.

The optical absorption spectrum has been calculated with the linear response time-

dependent DFT (TDDFT) as implemented in the turboTDDFT code[8]. 4000 Lanczos it-

erations were computed for each spectra, and 6000 additional coefficients are obtained by
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FIG. 1: (Color online) Density of states of CNT10R structure in extended range. Zero energy is

the Fermi level.

extrapolation. A half width at half maximum parameter of 0.1 eV was used to broaden the

spectra. As the turboTDDFT code only allows to compute gamma point wavefunctions, used

a seven-units supercell, equivalent to a 1 ××7 k-points mesh. This sampling is not enough

to obtain a fully converged spectrum, but it produces converged positions and intensities of

the main peaks. We have proved that this is the case by performing control simulations with

five-units and eight-units supercells. Results show that some shoulders of the main peaks

change between the 7-units and 8-units supercell. We have also made tests of convergence

using the spectra calculated in the single-particle approximation, that can be done with any

sampling of the Brillouin zone.

The molecular dynamics simulations were carried out using the General Utility Lattice

Package (GULP) [9]. The simulations have been in the NVT ensemble with of Nose-Hoover

thermostat parameter of 0.005. The equation of motion was integrated with the leapfrog

algorithm and a time step of 1 fs.
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FIG. 2: Density of states of CNT10R structure projected on tri-coordinated and bi-coordinated

carbons. Zero energy is the Fermi level.

II. ELECTRONIC STRUCTURE

Figure 1 shows the projected density of states (DOS) over 2s and 2p atomic orbitals. It

shows that between -11 eV and 3 eV DOS is dominated by 2p states. Out of this range, 2s

states contribute significantly and dominate DOS peaks at -18.3,-14.8, and -14.6 eV.

Fig. 2 shows the atom-projected DOS on tri- and bi-coordinated carbons. The largest

imbalance is in favor of bi-coordinated carbons at -2.35 eV, and in favor of tri-coordinated

carbons at -7.13 eV. This imbalance might help to differentiate both types of carbons by

scanning tunneling microscopy.

A. Charge density and electron localization function

The valence charge density isosurfaces are shown in Fig. 3. The high density isosur-

faces locate around the bonding lines, taking the highest values around the bonds between

bicoordinated carbons. This is an indication of a multiple bond, although it may also be
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a consequence of the proximity of both atoms. One obvious question is the satisfaction

of the valence rules. The calculation of the spin density shows negligible values (absolute

integrated values of 0.01 Bohr magneton) that can be attributed to controlled numerical

error. This means that there is no unpaired electron state.

FIG. 3: Charge density isosurfaces. Density values: (a) 0.2 au, (b) 0.25 au, (c) 0.3 au.

The isosurfaces of the electron localization function (ELF)[10, 11] isosurfaces are shown

in Fig. 4. Spatial regions with high values of the ELF indicate paired electrons, such as

covalent bonds and lone pairs. In Fig. 4 the clouds of the ELF are located around the

bonding lines, indicating covalent bonds and no lone pair. The symmetry and sizes of the

isosurfaces indicate qualitatively the bonding characters. One can see that the isosurfaces

around the bonds 2C-C2 and 2C-C3 have approximately cylindrical symmetry for ELF=0.8,

and that the former isosurface is much larger than the second one. This suggests a triple and

a single bond at 2C-C2 and 2C-C3. On the other hand, the isosurfaces around the middle

of short 3C-C3 bonds are elongated perpendicularly to the bond, indicating a π-type bond.

Naturally, as the geometry deviates from the ideal hybridization geometries, the symmetry

of the ELF cannot be perfect, as is shown for ELF=0.75 and 0.85. A bond order analysis

in the next section provides mathematical support to this discussion.
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FIG. 4: Electron localization function.

B. Bond orders and charge deformations

Non-periodic hydrogen-terminated models of CNT10R and graphene were obtained by

replicating the corresponding relaxed unit cells. Lengths of the CNT10R and graphene

models are 4.32 and 1.97 nm, respectively. Relaxed functions of these models were obtained

at PBE-PBE/6-31G level of theory. Calculations were performed with Gaussian 09 program

package.[12] A bond order (BO) analysis was performed by means of the Wiberg bond index

(WBI) under the natural bond orbital (NBO) description. The WBI indexes provided a

numerical picture about the bond types and are used to trace the electronic conjugation in

the system. The BO’s show that triple, double and even single bonds coexist in the CNT10R

rings. Consequently, the π electron density of this kind of CNT cannot be delocalized

through the whole system as is common in graphene and other CNTs. This is also expressed
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TABLE I: Carbon-carbon bond orders (BO) in CNT10R. The notation nC indicates an n-

coordinated carbon. There are two cases of 3C−3C bonds

2C−2C 2C−3C 3C−3C 3C−3C Graphene

(short) (long)

BL (Å) 1.23 1.41 1.43 1.49 1.42

BO 2.46 1.21 1.45 1.00 1.24

in the asymmetry in the bond length (BL). The difference in BO between long and short

3C−3C bonds also suggests a differentiation in single and double bonds. The fact that the

2C−3C BO is larger than one (in contrast with the long 3C−3C bond), together with the

similarity in BL and BO with the case of graphene, suggests that 2C−3C bonds share some

π delocalization with neighbor bonds.

III. POLARIZABILITY

The polarizability tensor is given by turbo-TDDFT in units of e2a20/eV = 4.032306 Å3,

where a0 is the Bohr radius. For reference it is shown in Fig. 5. The absorption spectrum

is proportional to the cross section

σ(ω) =
4πω

c
Imαnn(ω), (1)

where n = x, y, z is the direction of light polarization vector. The polarizability tensor is

diagonal.

As the calculation has been performed with periodic boundary conditions, the polariz-

ability given by turbo-TDDFT is in fact

4πnα = ε− 1, (2)

where n is the particle density, i.e., the inverse of the supercell volume, and ε is the effective

dielectric function of periodic array of nanotubes. Both α and ε are frequency-dependent

complex functions.

The dielectric function relates with the polarizability of individual molecules α1 by the

Clausius-Mossotti, that can be cast as

7



 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  1  2  3  4  5

Po
la

ri
za

bi
lit

y 
(Å

3 )

E (eV)

x30

perpendicular polarization corrected
parallel polarization

perpendicular polarization uncorrected

FIG. 5: Polarizability per unit cell of CNT10R.

4πnα1 =
ε− 1

1 +Np(ε− 1)
, (3)

where Np is the depolarization factor. For cylindrical geometry and parallel polarization

Np = 0 and no correction is needed.

α1,‖ = α‖. (4)

For perpendicular polarization Np = 1/2. Hence

α1,⊥ =
α⊥

1 + 4πNpα⊥
. (5)

The corrected and uncorrected polarizability are shown in Fig. 5.

IV. VIBRATIONAL MODES

Tables II and III display the amplitudes of vibration of the IR and Raman active vibra-

tional modes.

TABLE II: IR active modes.
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Mode 11, 279 cm−1

Mode 29, 488 cm−1

Mode 50, 711 cm−1
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Mode 70, 1293 cm−1

TABLE III: Raman active modes.

Mode 22, 411 cm−1

Mode 32, 537 cm−1
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Mode 47, 690 cm−1

Mode 63, 1201 cm−1

Mode 71, 1297 cm−1
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Mode 78, 2036 cm−1

The Raman mode at 2036 cm−1 deserves a special attention. This frequency is typical of

triple bond stretching, in agreement with the above mentioned descriptors of the electronic

structure.

V. DOUBLE CHAIN MODEL

The CNT10R structure can be understood as a pair of intertwined chains of carbons with

alternating single (S), double (D) and triple (T) bonds. Each chain is represented in Fig.

6 with a different color. The bond multiplicity sequence is (STS)D(STS)D.... Denoting the

carbons by their coordination, the full sequence is specified as (3S2T2S3)D(3S2T2S3)D...,

and can be regarded a hybrid polyyne-cumulene chain.[13, 14] The chains are stabilized by

bridging single bonds, indicated in Fig. 6 by two-color sticks. The individual chains has a

period of a double unit cell, i.e., 22.308 Å. Each period contains seven units (3S2T2S3)D of

each chain. The D bonds make a turn of 180◦ in the chain period, averaging to 25.7◦ between

consecutive positions. Of this amount, 6.0◦ in average correspond to dihedral angles of the

(3S2T2S3) subunits. The bond multiplicities are idealized in this picture, the bond angles

along the chains are not 180◦ and 120◦ and some amount of bond order is transferred from

the T to the adjacent S bonds.
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FIG. 6: Double chain model of CNT10R.(a) Ball view. (b) Ball and sticks view with indication of

single (S), double (D), triple (T) and bridging (B) bonds.
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