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Abstract
A method to calculate the quantum states of exciton–phonon complexes in
semiconductor nanocrystals is presented. The exciton–phonon complexes are
built from a basis set made of products of phonon states and electron–hole
pairs, which are coupled through the electron–phonon Fröhlich interaction, and
the electron–hole Coulomb and exchange interactions. In CdSe nanocrystals,
the conduction band electrons are described by the effective mass equation,
while the holes are represented by the spherical 4 × 4 Baldereschi–Lipari
Hamiltonian. It is shown that a flexible and complete electron–hole basis,
not limited to the 1s–1S3/2 octet, is essential to obtain converged eigenvalues
and the correct polaron shift to the exciton energy. A study of the spectral
properties is presented; in particular, the spectral region which involves the
lowest exciton–phonon complex eigenstates is analysed in details. Specifically,
the non-adiabatic nature of the exciton–phonon dynamics in the nanocrystals
examined is clearly shown by the vibron eigenstates that were obtained.

1. Introduction

The electron–phonon interaction modulates or determines almost every process in
semiconductor systems. While its effects in bulk materials can generally be considered as
perturbations, conceptually and technically, this situation can be strongly modified by the
inhomogeneity inherent to nanostructures. Two elementary excitations can generally couple
unless their interaction is forbidden by symmetry. In particular, the symmetries of time and
spatial translation lead in crystal physics to the paradigm of an overlap in energy and wavevector
as a natural condition to form coupled states. The breakdown of translational symmetry
activates many forbidden interactions; a critical example is the enhancement of the bulk-
forbidden Fröhlich electron–phonon interaction [1] in polar semiconductor nanostructures and
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its predominant role in light scattering. Despite this fact, the optical properties of nanostructures
have generally been considered as pure electronic transitions assisted by phonon emission
or absorption. There are several objections to this picture, at least for zero-dimensional
nanostructures. First is the fact that electronic excitations (electrons, holes, excitons) and the
optical phonons are all confined in the same region of the space. Second, there are electronic
excitations with a high degree of degeneracy, as the lowest exciton in CdSe nanocrystals. Third,
there are excitation energies equal to the phonon energies that can be tuned via the size and
shape dependence. Although these facts have been noticed in the past [2–7], very limited
attempts to study the full spectrum of exciton–phonon coupled states, i.e. the vibrons, have
been carried out. Several simplifications have been made, such as parabolic bands [2, 8, 9],
neglect of Coulomb effects [10], and two-state exciton models [11]. In all cases, except [11],
only the lowest energy level has been studied. In the present work, a method to study the
vibrons in CdSe nanocrystals has been developed. The intrinsic complexity of the valence
band spectrum of the CdSe nanocrystals is fully described using the Baldereschi–Lipari 4 × 4
Hamiltonian, and Efros electron–hole exchange and crystal-field splitting operators [12, 13],
while the conduction band states are obtained from the effective mass equation. The Coulomb
effects in the electronic structure and the vibron states are properly treated using a basis of
confined electron–hole pairs (EHP), the completeness of which is controlled by a single cutoff
parameter. In section 2 we describe the procedure to build the vibron eigenstates. We monitor
the convergence rate by the polaron energy, the phonon occupation number, and a new third
parameter which controls the exact convergence of the vibronic states. In section 3 we show
the spectral and optical properties of vibron states in a CdSe nanocrystal, and present our
final comments. Furthermore, the non-adiabatic character of the electron–phonon dynamics
is evidenced by explicitly decomposing important low-lying eigenstates in their substantial
and essentially different adiabatic components. The details of the calculation of the excitons
and longitudinal optical (LO) phonon modes that originate the vibrons are summarized in the
appendix.

2. Theory

2.1. Physical model

The exciton–optical phonons system is described by the Hamiltonian

H = HE + HL + HE–L =
∑

µ,µ′
Eµ′,µ D̂†

µ′ D̂µ +
∑

p

h̄ωpb̂†
pb̂p +

∑

µ,µ′,p

[〈
µ′ ∣∣H +

E–L(p)
∣∣µ

〉
b̂†

p

+ 〈
µ′ ∣∣H −

E–L(p)
∣∣µ

〉
b̂p

]
D̂†
µ′ D̂µ, (1)

where HE, HL, and HE–L are the Hamiltonians of the electronic system, lattice vibrations, and
their interaction, respectively. D̂µ and b̂p (D̂†

µ and b̂†
p) are annihilation (creation) operators of

EHPs µ and phonons p. The electronic matrix elements Eµ′,µ, the phonon energies h̄ωp, and
the EHP-phonon matrix elements are discussed in the appendix. Note that the µ states can be
any excited states of the electronic system, the ground state of which (vacuum) is taken as fully
occupied valence bands and an empty conduction band. In a wide-gap semiconductor, such
as CdSe, the energy required for creating an exciton from the vacuum or a biexciton from an
exciton is much larger than the phonon energies. Hence, we ignore contributions of biexcitons
and the vacuum to the vibron states.

Due to the spherical symmetry, the EHP states |µ〉 can be described by the quantum
numbers of the energy Nµ, the total angular momentum Mµ, its projection on the Z -axis Mzµ,
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and the parity Pµ = ±1 (see appendix and [14]). Due to the spherical symmetry, the phonons
are labelled by the indices p ≡ (ñp, lp,mp) [15], which can be considered as quantum numbers
of energy, angular momentum, and its projection. Note that we use ñp for the normal mode
index, and reserve np for the phonon occupation number.

Once the EHPs and the phonons are calculated, the vibrons can be obtained by a series
expansion

|v〉 =
∑

µ;n p1 ,n p2 ,...

t (v)µ;n p1 ,n p2 ,...

∣∣n p1, n p2 , . . . ;µ
〉
, (2)

where t (v)µ;n p1 ,n p2 ,...
are variational coefficients and

∣∣n p1 , n p2 , . . . ;µ
〉 = (b̂†

p1
)n p1

√
n p1 !

(b̂†
p2
)n p2

√
n p2 !

. . . D̂†
µ|0〉. (3)

Applying the Hamiltonian (1) to the state (2), the eigenvalue problem can be transformed
into the numerical diagonalization of the Hermitian matrix
〈
µ′; n′

p1
, n′

p2
, . . .

∣∣ H
∣∣n p1 , n p2 , . . . ;µ

〉 = [Eµ′,µ + (n p1 h̄ωp1 + n p2 h̄ωp2 + · · ·)δµ,µ′ ]
× δn p1 ,n

′
p1
δn p2 ,n

′
p2

· · · +
∑

p

[〈
µ′ ∣∣H +

E–L(p)
∣∣µ

〉 〈n′
p1
, n′

p2
, . . . |b̂†

p|n p1 , n p2 , . . .〉

+ 〈
µ′ ∣∣H −

E–L(p)
∣∣µ

〉 〈n′
p1
, n′

p2
, . . . |b̂p|n p1, n p2 , . . .〉

]
. (4)

The vibron basis {|n p1, n p2 , . . . ;µ〉} should contain the possible EHP states µ and all
normal modes p of the nanocrystal with all possible occupation numbers n pi (i = 1, 2, . . .).
In practice, the basis becomes very large and the key issue is to study the convergence and to
find which basis states are essential for the vibrons to be calculated. We present this analysis in
section 2.2.

The main technical difficulty is the large dimension of the matrix Hamiltonian.
Considering vibrational states of Nph � (Nph)max phonons in Nmodes normal modes and NEHP

electron–hole pairs, the dimension of the Hamiltonian matrix is

Nmatrix = NEHP ×
(Nph)max∑

Nph=0

(Nmodes + (Nph)max − 1)!
(Nmodes − 1)!Nph! . (5)

As will be shown later, the most stringent parameter to achieve convergence with the basis
size is NEHP, which is related to the electron–hole interaction.

The spherical symmetry allows us to separate the Hamiltonian matrix in blocks. When a
phonon is created or annihilated in a process described by HE–L, there are selection rules that
imply the conservation of the parity, the angular momentum projection on the Z -axis, and its
square. This was shown explicitly in [16] for the case of a non-degenerate valence band, and
it is deduced in a similar way considering the 4 × 4 Baldereschi–Lipari Hamiltonian and the
matrix elements reported in [17]. We take advantage of the symmetry, separating the basis
states in groups with well-defined values of the first two conserved magnitudes, i.e.

Mv = Mz +
∑

p

np × mp (6)

for the angular momentum and

Pv = (−1)1+l+L+∑
p np×lp (7)

for the parity. In equation (7), l and L are the orbital quantum numbers of the electron and the
hole, respectively. The exponent 1 comes from the symmetry of the valence Bloch functions.
In order to have a well-defined square of the total angular momentum, we would need to build
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symmetrized combinations using the Clebsch–Gordan coefficient. We have not attempted that,
in view of the difficulties raised by handling a variable number of particles.

Despite the reduction of the Hamiltonian matrix using (6) and (7), its size does not allow
us to calculate all the matrix elements in a reasonable time. Hence, we apply the perturbative
method of Löwdin [18] to obtain an effective Hamiltonian matrix of reduced dimension. The
basis states (3) can be divided in two groups, let us say, A and B . In group A are included the
NA EHPs (near states) of lowest energy and all possible phonons. In group B are included the
remaining EHP with all phonons. Schematically, the vibron state is expanded as

|v〉 =
∑

i∈A

ti |ψi 〉 +
∑

β∈B

tβ |ψβ 〉, (8)

abbreviating |ψi 〉, |ψβ〉 as the basis states. Let hi j be the initial interaction matrix, E0
v an

approximation to the energy of |v〉, and let h′
i j be a renormalized matrix

h′
i j = hi j +

∑

β∈B

hiβhβ j

E0
v − hββ

, i, j ∈ A. (9)

Then the energies Ei and the coefficients ti can be obtained from the equation
∑

j∈A

(h′
i j − Eiδi j)t j = 0, i, j ∈ A (10)

and

tβ =
∑

k∈A

hβk

E0
v − hββ

, β ∈ B, k ∈ A. (11)

In principle, the energies Ei are obtained by a self-consistent solution of equations (9) and (10).
In this work, self-consistence has not been used, but a reasonable approximation to the full
diagonalization results is obtained. As an initial approximation E0

v for the polaron energy, we
have chosen either the term h11 or the lowest eigenvalue of hi j (i, j ∈ A), obtaining practically
equal results. The number of near EHP states (NA) must be chosen by a compromise between
accuracy and the expense of computer resources. It must satisfy two constraints. First, all the
EHPs with an energy in the spectral range of interest must be included in group A. Second,
group A must include only closed shells of EHPs in order to preserve the fine structure of the
vibron levels.

2.2. Vibron basis and convergence control

As we are proposing a new method to find the eigenstates of the Hamiltonian (1), it is very
important to evaluate its ability to provide the correct eigenstates and its accuracy. We shall see
that some physical parameters, i.e. the polaron correction energy, have stringent convergence
requirements. We need to establish which phonon and EHP states must be included in the
vibron basis to get reasonable physical properties for the lowest-energy vibrons. For CdSe
nanocrystals we use the parameters listed in table 1.

First, we have determined the multiphonon states that must be included in the basis. We
build the vibron basis, adding states of zero phonons (which are the pure EHPs), one phonon,
two phonons, etc, up to a maximum phonon population (Nph)max = max(n p1 + n p2 + · · ·). We
have included in the basis the optical phonons with ñp = 1, 0 � lp � 3, and −lp � mp � lp.
To monitor the convergence, we have used the energy, the mean phonon occupation number
〈n〉 = ∑

p〈v|b̂†
p b̂p|v〉, and the number � = (1/h̄ωLO)

∑
p

∣∣〈v|[b̂p, Ĥ ]|v〉∣∣. The estimator �

has the advantage that we know its exact value when |v〉 is an exact eigenstate of Ĥ , i.e. zero.
We have made test calculations with 0 � (Nph)max � 5, keeping fixed the number of EHPs in
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Figure 1. Convergence of the exciton and polaron
energies, and its difference (polaron correction) with
the size of the electronic basis for a CdSe quantum
dot 2 nm in radius. The basis set contains zero-,
one- and two-phonon states. The full diagonalization
results are compared with the Löwdin scheme, where
NA is the number of near EHP states.

the basis, and we have found that, for (Nph)max = 2, the energy converges within 0.1 meV, 〈n〉
within 0.02, and� ∼ 0.03. The results are identical for Mz = 0, 2, and if the maximum phonon
lp is 2 or 3. This means that lp = 3 phonons are not important for the lowest-energy vibrons.

We generate the EHP basis, taking all the electron and hole wavefunctions with
wavenumbers k smaller than a cutoff kmax. Hence, the cutoff energies for electrons and
holes are Ecut(e, h) = h̄2k2

max/2me,hh R2, respectively. This scheme is more efficient than
using a single cutoff for the electrons and holes. As the electron wavefunctions are modelled
using an effective radius Reff, the cutoff wavenumber for them is slightly reduced, according
to k̃max = kmax R/Reff. Figure 1 shows the convergence of the lowest energy of the bare
exciton (i.e. including only zero-phonon states in the basis) and the polaron (lowest vibron)
including up to two phonon states. The difference between these energies (polaron correction)
is also shown. Figure 1 also shows the comparison between the direct diagonalization of
the Hamiltonian and the Löwdin method, which is the only practical way for a large EHP
basis. Two facts are remarkable. (1) The large number of EHP basis functions needed to
achieve a convergence (relative to the increase of NEHP) within 1 meV accuracy. (2) The
converged polaron correction �Eex to the exciton energy is 11 meV, doubling the estimation
of 5 meV obtained using the EHP basis limited to the 1s–1S3/2 octet. This is somewhat
surprising, as the diameter of this nanocrystal is smaller than the bulk exciton radius. In fact,
it is influenced by the finite confinement acting on the electron, which causes the electron
wavefunction to extend up to 2.8 nm from the centre of the nanocrystal. We have repeated
the study of convergence, considering infinite confinement for the electron, as well as for the
hole, and we find �Eex = 0.4 meVNote 4 using the EHP basis limited to the 1s–1S3/2 octet,
as in [10]. On the other hand, using the large EHP basis, we get �Eex ∼ 7 meV. These
numbers can be compared with those of Oshiro et al [9, 23], of 6 meV for infinite confinement,

4 This small value is the net effect of the valence band mixing. The corresponding value in a parabolic valence band
model is 0.
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Figure 2. Contributions of Nph-phonon states (Nph = 0, 1, 2) to the density of states in a wurtzite
CdSe nanocrystal 2 nm in radius. The partial DOS are given in units of the inverse of the histogram
energy step δ = 0.5 meV. The EHP basis size is defined by NEHP = 1458 (kmax = 7.75) and
NA = 16. The full lines show the DOS (up section of each Nph phonon graph) and the integrated
DOS (down section of each Nph phonon graph) of vibron states. For comparison, the dotted line
shows the combined DOS of pure excitons and phonons. The pure exciton states of the lowest octet
are indicated: ±2, ±1L, 0L, ±1U, 0U.

and 50–10 meV considering confinement potential, obtained assuming parabolic bands and a
variational wavefunction for the exciton. All these facts show the necessity of a flexible basis
set and the importance of controlling the convergence.

3. Vibron properties

3.1. Spectral properties

Let us explore the features of the exciton–phonon complexes. It is important to know which
phonons couple strongly with the exciton states, the relative contributions of N-phonon states,
and to what extent are the coupled states realized in a typical nanocrystal.

First, let us examine the Nph-partial density of states (DOS) defined as

ρNph (E) =
∑

v

∑

µ;n p1 ,n p2 ,...

(n p1 +n p2 +···=Nph)

|t (v)µ;n p1 ,n p2 ,...
|2δ(E − Ev). (12)

Figure 2 shows, in continuous lines, the vibron Nph-partial DOS for a wurtzite CdSe QD
2 nm in radius, calculated using a basis of 1458 EHPs (kmax = 7.75), 16 of which are the
near states in the Löwdin scheme. The dotted lines show the corresponding DOS in the case
that the exciton–phonon coupling is dropped. To avoid plotting the delta functions in (12), the
ρNph (E) are represented by histograms with an energy step δ = 0.5 meV. The DOS are given
in units of δ−1, indicating directly the number of states in each step. The energy-integrated
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Table 1. Parameters used in the calculations. εd is the dielectric constant of the glass matrix.

Parameter CdSe

Eg (eV) 1.841c

me/m0 0.13d

γ1 1.66d

γ2 0.41d

2m0 P2 (eV)a 20e

Ve (eV) 0.6d

Vh (eV) ∞d

� (eV) 0.025f

εexcha3
0 (eV Å

3
) 35.81f

ε0 9.53g

ε∞ 5.73b

εd 4.64g

ωL (cm−1) 213.1g

ωT (cm−1) 165.2g

βL 1.576 × 10−6 g

βT 0g

a P = −i〈S| p̂x |X〉/m0.
b ε∞ = ε0(ωTO/ωLO)

2.
c Reference [19].
d Reference [20].
e Reference [21].
f Reference [12].
g Reference [22].

partial DOS are also shown, as they are nearly independent of the energy step. In the sum
are included the 20 lowest vibron states for each set of quantum numbers Mv = 0,±1,±2
and Pv = ±1. In the absence of the electron–hole interaction and of the coupling with the
phonon field, the lowest level is composed of the 1s–1S3/2 EHPs. The 1s electron has a spin
degeneracy of 2, and the 1S3/2 hole has a degeneracy of 4 (neglecting the crystal field splitting),
giving an eightfold degeneracy. Their spherical-symmetrized combinations (1s–1S3/2)M,Mz

have total angular momenta M = 1 and 2. The Coulomb interaction does not split this level,
but the exchange interaction and the crystal field split it into five levels that are named briefly
by their angular momentum projection as ±2, ±1L, 0L, ±1U, and 0U, with L and U meaning
lowest and upper, respectively [13]. Additional peaks show up at energies larger than 2.192 eV
coming from the 1s–1P3/2 EHP octet. The integrated zero-phonon partial DOS of the uncoupled
exciton–phonon system displays steps of integer values at the exciton energies, as it is the DOS
of an isolated exciton system. The DOS in the upper panels are the one- and the two-phonon
replicas of the exciton DOS. Comparing the bare exciton and vibron DOS, one can appreciate
the effects of the exciton–phonon coupling. The effects of the electron–phonon coupling are
to shift and to spread the bare exciton levels. The uncoupled one-phonon integrated DOS is 0
for energies smaller than 2.160 eV, however it takes finite values at the polaron energy in the
coupled case. For well-separated vibron levels, such as the first two levels, the relative values
of the zero- and one-phonon DOS indicate the relative weight of the zero- and one-phonon
basis in the composition of the vibron states. The two-phonon integrated DOS is almost zero
for an energy smaller than 2.187 eV in the uncoupled case, but rises at 2.148 eV in the coupled
case. Comparing the zero- and one-phonon DOS, one sees that the uncoupled exciton ±1U at
2.160 eV coincides with the rise of the one-phonon uncoupled DOS. This resonance causes
strongly non-adiabatic vibrons when the coupling is switched on.
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Figure 3. Partial DOS for Nph = 0, 1, 2, 3, 4 using a basis with 86 EHP. The first strongly coupled
vibrons, from the third excited level to the 28th for Mv = 0, are shown. The DOS are given in units
of the inverse of the energy step δ = 2.525×10−4 eV. Dotted lines shows the vibron states obtained
for a basis with (Nph)max = 2; the filled curve shows the same states for a basis constructed with
(Nph)max = 4.

3.2. Non-adiabatic properties

Let us consider in more detail the spectral region of one-phonon replicas of the lowest exciton
octet. For this study, we include up to four-phonons states in the vibron basis, a reduced set of
86 EHP, and we drop the crystal field and exchange interactions. This extended basis regarding
the phonon number allows us to assess the completeness of a two-phonon basis for this spectral
region. Also, the phonons (ñp = 2, lp = 0,mp = 0) and (ñp = 1, lp = 3,mp) have been
included in this basis.

Let us first analyse the influence upon the vibron spectrum of the maximum phonon
population (Nph)max allowed in the basis set. In figure 3 we show the partial DOS for vibrons
with Mv = 0. Dotted and full bars correspond to (Nph)max = 2 and 4, respectively. In
the spectral range shown (2.180–2.190 eV), the effect of increasing (Nph)max from 2 to 4 is
more pronounced than that of the first two-fold degenerate level with Mv = 0 (not shown).
The one-phonon partial DOS (Nph = 1) is the dominant one, and is red-shifted by nearly
2 meV. However, the overall partial DOS profile is not changed significantly. The second
leading contribution in this spectral range comes from two-phonon states, followed by zero- and
three-phonon states, while the four-phonon partial DOS is one order of magnitude smaller. A
significant feature seen in figure 3 is that the shapes of the Nph-partial DOS in the plotted range
coincide for Nph = 2, 3, 4. The inspection of the eigenvectors corresponding to each vibronic



Exciton–phonon complexes and optical properties in CdSe nanocrystals 7291

Table 2. Leading contributions to the norm of the lowest non-adiabatic vibron, calculated with
(Nph)max = 4.

Basis state |t (v)µ;n p1 ,n p2 ,...
|2

|np; (electron–hole)M,Mz 〉 R = 2.0 nm R = 3.2 nm

|0; (1s–1P3/2)1,0〉 0.08 0.42
|11,1,−1; (1s–1S3/2)1,1〉 0.30 0.20
|11,1,1; (1s–1S3/2)1,−1〉 0.30 0.20
Other 0.32 0.18

level shows us the mixture between the different basis states. The two lowest degenerate states
for Mv = 0 at energy 2.160 eV can be approximately considered as adiabatic excitations.
From the discussion in section 2.2 and our calculation for (Nph)max = 4, it is clear that the
main components of these two vibrons are basis states with 0 phonons, but also important
components with different number of phonons (Nph = 1, 2) are present. Nevertheless, the three
main contributions corresponds to a certain occupation number of phonons, and a coincident
single EHP (for the polaron, this corresponds to the (1s–1S3/2)1,0 EHP). Thus, these two levels
can be considered as adiabatic to a good approximation.

A different picture arises when we study higher states. Almost all the states in the
higher spectral range have an important mix of basis states with different EHPs and phonon
constituents. For example, the three main components of the third vibron state for Mv = 0
(2.181 eV) are the (1s–1P3/2)1,0 EHP with 0 phonons and the (1s–1S3/2)1,Mz (Mz = ±1)
EHPs with one phonon (ñp = 1, lp = 1,mp = −Mz). Table 2 shows the contributions
to the norm of these three basis states. Thus, this level is a non-adiabatic excitation, and
this feature is also present in most of the states shown in figure 3. There are no significant
differences in the composition of the vibron states obtained with either the reduced basis
((Nph)max = 2) or the extended basis ((Nph)max = 4, and phonons (ñp = 2, lp = 0,mp = 0)
and (ñp = 1, lp = 3,mp)). The relative weights of the different contributions change with
the nanocrystal radius and can undergo a resonance effect. For a radius of 3.2 nm, the energy
difference between the two lowest pure exciton levels (calculated considering (Nph)max = 0)
equals the LO phonon energy. This produces an increase in the mixing of these states, as can be
seen in table 2, while the two-phonon contributions are reduced. It should be remarked that the
crystal field and exchange interactions affect the exciton fine structure and modify the values
of the wavefunction coefficients. However, it does not alter the above conclusion about the
presence of non-adiabatic states associated with the phonon dynamics in CdSe quantum dots.

3.3. Optical properties

Absorption and luminescence spectra in nanostructures are associated with optical transitions
between vibronic states. Let us call down the energy levels Ed, the initial states in photon
absorption and the final states in emission. Similarly, let us call up the energy levels Eu, the
final vibron levels in absorption and the initial levels in emission. Down levels correspond to
the ground electronic state |G〉 with phonon excitations, the lowest level corresponding to the
phonon vacuum. Up levels are made of the vibrons calculated in this work.

Neglecting the direct photon–phonon interaction, which is not resonant at optical
frequencies, the up–down state optical dipole matrix element can be cast as

Du,d =
∑

µ;n p1 ,n p2 ,...

t (u)∗µ;n p1 ,n p2 ,...
δn′

p1
,n p1
, δn′

p2
,n p2

. . .Dµ,G, (13)

where n′
p1
, n′

p2
, . . . are the phonon occupation numbers of the down state. The dipole operator

matrix element between an EHP µ = |nNl L f F; M Mz〉 and the electronic ground state G is
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given by [17]

Dµ,G = ie

m0ωµ,G
〈µ ∣∣p̂

∣∣ G〉 (14)

= δM,1ê∗
Mz

2ieP

ωµ,G
(−1) f +5/2

√
(2 f + 1)(2F + 1)

3

×
{

1 3/2 1/2
l f F

} (
δl,L + δl,L+2

) ∫
R(F)N,l (r)Rnl(r)r

2 dr, (15)

where m0 is the free electron mass, e is the proton charge, and P = −i〈S|pz|X〉/m0 is
the interband matrix element. These dipole matrix elements are different from zero only for
M = 1 and proportional to ê∗

Mz
, where êMz=0 = êz and êMz=±1 = ∓(êx ± iêy)/

√
2 are the unit

vectors in the spherical representation. This accounts for the optical selection rules in the dipole
approximation: the only optically active electron–hole pairs have Mz = 0,±1 and M = 1.

The absorption cross section of a nanocrystal at the transition frequency ωu,d can be cast
as

σ(ωu,d ) = 4π2ωu,d

η2h̄c

∣∣el · Du,d

∣∣2
, (16)

where el is the light polarization vector, η is the refractive index of the embedding matrix, and
c is the speed of light in vacuum. The radiative lifetime of a vibron in the state u is given by

τu =
(

∑

d

4ηω3
u,d

∣∣Du,d

∣∣2

3h̄c3

)−1

. (17)

Within the excitonic picture, the direct optical transitions occur between the exciton
vacuum G and the lowest excitons without a change of the vibrational state. Phonon-assisted
transitions, in which the phonon population is different in the final state, is calculated by
perturbation theory of the exciton–phonon interaction. In a vibron picture, all the transitions
are treated on an equal footing, although for weak coupling the relative strength of the
spectral lines should correspond to those of the excitonic picture plus perturbation theory.
The excitonic picture breaks down when the gap between two exciton energy levels gets
close to the optical phonon energy. In this case, non-adiabatic states appear and the vibron
picture becomes indispensable. The contribution from every transition is weighted by the
statistical factors affecting the initial states. In absorption, the probability of occurrence
of the initial states with energy Ed = ∑

p nph̄ωp is given by the Boltzmann distribution
P(Ed) = Z−1 exp(−Ed/kBT ), where the partition function, restricted to the down states, can
be taken as Z = ∑

d exp(−Ed/kBT ). At low temperature, the Boltzmann factors quench the
transitions from initial excited phonon states. At room temperature, the optical phonon energy
is comparable to kBT . Hence, one-phonon states, with slightly different energies, participate
as initial states in the optical transitions. Moreover, these transitions make accessible the
non-adiabatic vibron states with leading one-phonon partial DOSs which were discussed in
section 3.2.

The calculated absorption spectrum at low temperature and room temperature of a model
CdSe nanocrystal 2 nm in radius are shown in figure 4. The combined effects of dephasing
by acoustic phonons and impurities, spectral jitter and jump, etc, are simulated, associating
with each transition a lorentzian function with a uniform full width at half maximum that will
be assumed to be 5 meV for 4 K and 50 meV for 300 K [24, 25]. At 4 K, the transitions
occur from the ground state (without phonons) to the optically active vibron levels. Due to
the fine structure of the exciton and vibron spectra, the peak positions depend on the angular
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Figure 4. Fine structure of the absorption cross section of a single CdSe nanocrystal 2 nm in radius,
calculated for the bare exciton at 4 K and for the vibrons at 4 and 300 K. The light electric field
polarization vector el is parallel or perpendicular to the hexagonal c-axis of the nanocrystal. Vertical
lines represent the different contributions to transitions.

momentum of the absorbed photon, i.e., its polarization. The lowest optically active level, at
2.129 eV, has Mv = ±1 and this transition is allowed for polarization perpendicular to the
c-axis of the nanocrystal (c ⊥ el ). Photons with parallel polarization (c ‖ el) are absorbed by
Mv = 0 vibrons, the lowest one at 2.151 eV. Higher peaks correspond to transitions to higher
vibron levels, including non-adiabatic ones. In the bottom of the figure is shown the spectrum
calculated with the bare exciton model at 4 K. The 300 K spectrum of the bare exciton is the
broadened convolution of the 4 K spectrum. The vibron model predicts several additional peaks
due to non-adiabatic states, which in a simplified picture could be interpreted as replicas due
to renormalized LO phonons [3]. At room temperature the transitions from phonon-populated
down levels are activated. These transitions are included in the bare exciton model, but the
spectrum does not change, because the electron and phonon systems are independent. In the
full vibron model, the simple excitonic peaks are split in many close lines.

Figure 5 shows the emission spectrum calculated at 4 and 300 K with the full vibron model
and at 300 K using the bare exciton model (i.e. dropping the exciton–phonon coupling). As will
be argued below, at 4 K the emission can occur via phonon-assisted transitions and is outside the
scope of a pure exciton model. In emission, the distribution function of a certain energy Eu is a
complex and generally unknown function of the excitation power and the rates of relaxations,
radiative and non-radiative recombinations. In the limit of fast relaxation compared with
recombination and transitions to surface or external trap states, a quasi-equilibrium distribution
function P(Eu) = Z−1

v exp(−Eu/kBT ), with Zv = ∑
u exp(−Eu/kBT ), is reasonable. At

low temperature, the thermal factors quench the transitions from higher vibron levels. The
vertical full lines indicate the transitions responsible for the spectrum. In the framework
of a pure exciton theory, the bright exciton ±1L would be the emitting level. However,
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Figure 5. The same as in figure 4 for the emission
spectrum.

it is considered that this state relaxes to the lower ±2 dark exciton originating from the
(1s–1S3/2)2,±2 EHP [12, 13, 26]. Hence, the luminescence of CdSe nanocrystals is attributed
to a phonon-assisted recombination of this dark exciton and some other (still uncovered)
mechanism for a weak zero-phonon line. In a vibronic model, this emission corresponds to
a transition from the lowest Mv = ±2 vibron at 2.126 eV to one- and two-LO phonon down
states, in a ratio of 83:17, emitting photons of 2.100 or 2.074 eV, respectively. This vibron
has a recombination time of 1.3 µs, consistent in order of magnitude with the experimental
data [12]. This state is responsible for the 4 K luminescence shown in figure 5. The one-
phonon peak is due the phonons (1, 2,±1) for polarization perpendicular to the c-axis (c ⊥ el)
and the phonons (1, 2,±2) for parallel polarization (c ‖ el ). For both polarizations, the peak
energies are coincident. At 4 K, the Boltzmann factors quench all the transitions from higher
states. At 300 K, the transitions from the bright states, located at 3.5 meV above the dark level,
become allowed and dominate the emission spectrum, increasing the emission intensity by a
factor of 103 and shifting the peaks to the range of zero-phonon transitions. At this temperature,
the peak energies for both polarizations differ because the emission is produced by different up
states with Mv = ±1 and 0. These peaks have multiple contributions, including zero-phonon
transitions and transitions from non-adiabatic up states to down levels with excited phonons.
This can be compared with the simple picture of pure exciton transitions, shown in the bottom
of figure 5.

In summary, we have implemented the direct calculation of the spectrum and the
eigenstates of exciton–phonon complexes in CdSe nanocrystals, with possible applications
to other compounds. We have found that the polaron correction to the exciton energy is
significantly modified by the Coulomb interaction and a flexible wavefunction is needed even
in the case of a nanocrystal radius smaller than the free exciton radius and infinite confinement
potentials. We find that the virtual phonon number of the exciton polaron can be larger than 0.2,
and also appear completely non-adiabatic states that have an important mixing of two-phonon
states. This method opens a windows to investigate a rich spectrum of excitations that has been
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largely dismissed. Further calculations for ensembles of nanocrystals are needed to verify if
this improves the agreement of the theory with the experimental data.
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Appendix A. Electronic states

Electronic excitations with an energy close to the gap are described by the exciton Hamiltonian,
which can be cast as

HE = He + Hh + Veh, (A.1)

where He, Hh, and Veh are the electron and hole Hamiltonians, and the interaction operator,
respectively. In the effective mass approximation, the electron Hamiltonian is given by

He = p̂2
e

2me
+ Ve(re), (A.2)

me being the electron effective mass, and Ve(re) the confinement potential. The conduction
band electron wavefunctions can be cast as

〈r|nl f fz〉 =
∑

lz ,sz

(
l 1

2 lzsz | f fz
)

Rnl(r)Yllz (θ, ϕ) 〈r|1/2, sz〉 , (A.3)

where (l 1
2 lzsz| f fz) are the Clebsch–Gordan coefficients [27]. 〈r|1/2, sz〉 are the �6 Bloch

functions (with s = 1/2 being the conduction band-edge angular momentum and sz = ±1/2),
sz being the spin number. Rnl(r) are the radial wavefunctions of a particle in the potential
well Ve(re), and Yllz (θ, ϕ) are the spherical harmonics [28]. The states have well-defined total
(f = l + s) angular momentum projection h̄ fz and square value h̄2 f ( f + 1). Although the
simpler l–s coupling can be used for the conduction band electrons, the l–f coupling scheme
is a convenient way to build up the excitonic states in a spherical semiconductor nanocrystal.
For the hole state, the l–f coupling scheme is imperative, so its use for both electrons and
holes provides symmetry to the formula. Since the sz = ±1/2 bands are uncoupled by the
electron Hamiltonian (A.2), the states described by equation (A.3) have energies Ee

n,l that are
independent of the quantum numbers f , fz . In the simulation of the real electronic states, the
confinement potential is chosen as a spherical box with an effective radius Reff, which is greater
than the structural nanocrystal radius R. This effective radius is introduced in order to take
into account, approximately, the penetration of the electron wavefunction in the surrounding
medium. In our calculations, we determine Reff from the condition that the energy of the 1s
state E1,0 = h̄2π2/2me R2

eff is equal to the energy calculated for a spherical well with a depth
of Ve = 600 meV [20]. Hence,

Rnl(r) =
√

2

R3
eff

jl(kr/Reff)

jl+1(k)
, Enl = h̄2k2

2me R2
eff

, (A.4)

where k is the solution of jl(k) = 0.
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The hole states in the valence bands are described by a spherically symmetrized 4×4 k ·p
Hamiltonian [29–31]

Hh = γ1

2m0

[
p̂2

h − µ

9

(
P(2)h · J(2)

)]
+ Vh(rh)+ Vcf, (A.5)

where Vh(r) is the confinement potential for the valence band, and P(2)h and J(2) are spherical
tensors of rank 2 built from linear and angular momentum operators, µ = 2γ2/γ1, and γ2 and
γ1 are the Luttinger parameters of CdSe in the spherical approximation γ2 = γ3. Vcf is the
crystal field operator for a wurtzite nanocrystal, which can be cast as [12]

Vcf = −(�/2) (J 2
z − 1/4

)
, (A.6)

where � is the splitting of the top valence band in wurtzite bulk CdSe. This term only acts on
the Bloch part of the hole wavefunction. Vcf breaks down the spherical symmetry and it would
complicate unnecessarily the EHP basis functions. Instead of that, in this work Vcf is neglected
to obtain the EHP basis states, and it is reintroduced at the later step of building the vibronic
Hamiltonian.

The hole eigenfunctions in the L–F coupling scheme can be cast as

〈r|N L F Fz 〉 =
∑

K=L ,L+2

∑

Lz ,Jz

(
K 3

2 Lz Jz|F Fz
) × R(F)N,K (r)YK Lz (θ, ϕ) 〈r|3/2, Jz〉 , (A.7)

where 〈r|3/2, Jz〉 are the hole Bloch functions of the �8 valence band with band-edge angular
momentum J = 3/2. The hole Bloch functions result from the time-reversal operation on
the valence electron Bloch functions, the phases of which are defined elsewhere [14]. For an
abrupt confinement potential, the radial wavefunctions are similar to the electron functions for
F = 1/2; for F � 3/2 they are given by

R(F)N,L (r) = A

[
jL(kr/R)− jL(

√
βkr/R) jL(k)

jL(
√
βk)

]
, (A.8a)

R(F)N,L+2(r) = −A (C1 + 1) /C2 ×
[

jL+2(kr/R)− jL+2(
√
βkr/R) jL+2(k)

jL+2(
√
βk)

]
, (A.8b)

where β = m lh/mhh, mhh (m lh) is the heavy (light) hole mass, and C1 and C2 are defined
in [14]. The parameter k fulfills the transcendental equation,

jL(
√
βk) jL+2(k) (C1 + 1) = jL+2(

√
βk) jL(k) (C1 − 1) , (A.9)

and A is a normalization constant, such that
∫ [

R(F)N,L (r)
2 + R(F)N,L+2(r)

2
]

r 2 dr = 1. (A.10)

The hole energies are equal to Eh = h̄2k2/2mhh R2.
The above states are denoted by the usual spectroscopy notation N A, with A =

S, P, D, . . . (s, p, d, . . .) for the L = 0, 1, 2, . . . (l = 0, 1, 2 . . .) hole (electron) states. In
the case of the hole energies, the quantum number F is indicated by a sub-index, that is, N AF.

The EHPs interact through the screened Coulomb and exchange interactions

Veh = VCoul + Vexch = − e2

ε∞|re − rh| − 2

3
εexcha3

0δ(re − rh) (σ · J) , (A.11)

where e, ε∞, a0 and εexch are the electron charge, the high-frequency dielectric constant, the
lattice constant and the exchange strength parameter [12].
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In the past, the exciton states have been obtained by using an expansion in a basis of EHP
with the well-defined total angular momentum square h̄2 M(M + 1) and projection h̄Mz

|µ〉 = |nNl L f F; M Mz〉 =
∑

fz ,Fz

( f F fz Fz |M Mz ) |nl f fz〉 ⊗ |N L F Fz 〉 . (A.12)

In this work, we use the same states in the expansion for the vibron states. These EHP are
briefly denoted by the combination of the electron and hole labels in spectroscopic notation,
e.g. 1s–1S3/2. In the case that the angular momentum quantum numbers M and Mz need to be
specified, they are indicated by sub-indices. The non-diagonal part of the exciton Hamiltonian
is given by the matrix elements of the electron–hole interaction (A.11). An expression for the
Coulomb part was reported in [17]. For the exchange interaction, the following expression is
obtained by using the Wigner–Eckart theorem [27]:

〈n′ N ′l ′L ′ f ′ F ′M ′ M ′
z |Vexch|nNl L f F M Mz〉 = − 1

π

√
5

2
δM,M ′δMz ,M ′

z
δl,l′ (−1)F−F ′+ f − f ′+l

× (2 f + 1)(2 f ′ + 1)(2l + 1)(2F + 1)(2F ′ + 1)

×
∑

K ,K ′=L ,L+2

δK ,K ′

∫
Rn′l′(r)Rnl(r)R

(F ′)
N ′ K ′(r)R

(F)
N K (r)r

2 dr

× W ( f f ′ F F ′; 1M)W (1/2 1/2 f f ′; 1l)

× W (3/2 3/2 F F ′; 1K )
∑

p

(ll00|p0)(K p00|K 0)W (K K F F ′; p3/2)

× W (ll f f ′; p1/2)W ( f f ′ F F ′; pM), (A.13)

where W (abcd; ef ) are the symbols of Racah [27].
For convenience, we include the effect of the valence crystal field splitting at this point.

The matrix element can be cast as

〈n′ N ′l ′L ′ f ′ F ′M ′ M ′
z |Vcf|nNl L f F M Mz 〉 = −�

2
δn′N ′l′ L ′ f ′ F ′ M ′ M ′

z ;nNlL f F M Mz

− �δMz ,M ′
z
δn,l, f ;n′,l′ , f ′(−1)F+F ′+ f +1/2−M ′

z (M M ′ Mz − Mz |20)

× √
(2M + 1)(2M ′ + 1)(2F + 1)(2F ′ + 1)× W (F F ′3/2 3/2)

×
∑

K ,K ′=L ,L+2

(−1)K δK ,K ′ W (M M ′ F F ′; 2 f )
∫

R(F
′)

N ′ K ′(r)R
(F)
N K (r)r

2 dr. (A.14)

The exciton matrix element Eµ′,µ (see equation (1)) are

Eµ′,µ = (Ee + Eh)δµ′,µ + 〈µ′|VCoul + Vexch + Vcf|µ〉. (A.15)

Appendix B. Phonon states

The optical phonons are obtained from the continuum model of Trallero-Giner and
Comas [32, 33]. For a spherical quantum dot, the optical phonons produce an oscillating
electric potential with frequency [15]

ω2
p = ω2

L − β2
L

ν2
ñp,lp

R2
(B.1)

and spatial dependence

φp(r) =
√

h̄

2ωñp,lp

1√
Rρ

4πα

ε∞
�ñp,lp (r)Ylp,mp (ϑ, ϕ). (B.2)
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In the above formula, ωL, βL, ρ, and α are the longitudinal bulk phonon frequency at the
Brillouin zone centre, the curvature parameter of the longitudinal bulk phonon dispersion law,
the reduced mass density, and the electro-mechanics coupling parameter. The numbers νñp,lp
and the radial functions �p(r) are discussed elsewhere [15, 22].

The leading part of the exciton–phonon in polar semiconductors is effected via the electric
potential φ, and the interaction matrix element is
〈
µ′ ∣∣H −

E–L(p)
∣∣µ

〉 = 〈
µ

∣∣H +
E–L(p)

∣∣µ′〉∗

= e
∫

d3re d3rh�
∗
µ′(re, rh)

[
φp(rh)− φp(re)

]
�µ(re, rh). (B.3)

An explicit expression for these matrix elements was reported in [17]. Details of our calculation
of the optical phonons in CdSe nanocrystals can be found in [22].
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