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Abstract

Interband absorption and luminescence of quasi-two-dimensional, circularly symmetric, Ne-electron quantum dots are
studied at high magnetic �elds, 86B660 T, and low temperatures, T.2 K. In the Ne = 0 and 1 dots, the initial and �nal
states of such processes are �xed, and thus the dependence on B of peak intensities is monotonic. For larger systems, ground
state rearrangements with varying magnetic �eld lead to substantial modi�cations of the absorption and luminescence spectra.
Collective e�ects are seen in the Ne = 2 and 3 dots at “�lling fractions” 1

2 ;
1
3 and

1
5 . ? 2000 Elsevier Science B.V. All

rights reserved.
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1. Introduction

The quasi-two-dimensional electron gas in a high
magnetic �eld is a strongly correlated system ex-
hibiting very complicated dynamics. At special val-
ues of the �lling factor, the essential features of the
ground state are captured by the Laughlin wave func-
tion [1], or its composite fermion generalization [2].
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The low-lying excitations can be described in the
single-mode approximation of Girvin et al. [3,4] or in
the composite fermion picture [2,5,6].
Many experiments have been designed and

carried out in order to test the excitation spec-
trum of this highly correlated system. Inelas-
tic (Raman) light scattering experiments have
tested basically the excitation gap at wave vec-
tor k = 0 [7–10]. Spin-
ipped states and the
magnetoroton minimum at k ≈ 1=lB (lB is the
magnetic length) have also been observed, al-
though they should be activated by impurities or
other mechanism to produce a trace in the Raman
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spectra. Evidence of the magnetoroton minimum
comes also from the absorption of ballistic acoustic
phonons [11,12].
On the other hand, experiments on photolumines-

cence (PL) related to interband electronic transitions
around �lling factor �= 1 have tested the excited
states with an additional electron–hole (e–h) pair [13–
16]. Recently, the observations have been extended
to lower �lling factors by increasing the magnetic
�eld up to 60 T [17,18]. The related theory is not in
complete agreement with the experiment. In the in-
�nite magnetic �eld limit, it was predicted that only
the exciton (X 0) and the negatively charged triplet
exciton (X−

t ) are bound [19]. The latter is expected
to be dark in luminescence [19] as a result of a hid-
den symmetry related to magnetic translations [20].
In the experiments, however, very distinct singlet and
triplet peaks (X−

s and X−
t ) are observed. A realistic

calculation of ground state energies was presented
in Ref. [21], where Landau level and quantum well
(qwell) sub-band mixing were taken into account.
The X−

t peak position was reproduced, but in theory
this state is dark. The problem was recently revisited
by Wojs et al. [22], who showed that in a narrow
(10 nm wide) well a second bright X−

t state becomes
bound, thus interpreting the observed luminescence
as coming from the bright state. We shall notice that
both Refs. [21,22] deal with isolated three-particle
systems, and thus are not able to describe the �lling
factor dependence of observed magnitudes for �¿ 1

5 .
In the present paper, we study small quantum dots

(qdots) under conditions similar to the experiments
reported in Refs. [17,18], i.e. quasi-two-dimensional
motion, magnetic �elds in the interval 8 T6B660T,
and temperatures well below 2 K. The laser excitation
power is assumed to be low (a few mW=cm2), thus
the dot works under a linear regime. The lateral con-
�nement is modelled by a harmonic potential. Energy
levels, charge densities and dipole matrix elements for
absorption and luminescence are computed by exact
diagonalization in the �rst Landau level (1LL) ap-
proximation.
Absorption or PL experiments on electron–hole

qdots under very high magnetic �elds are lacking. To
the best of our knowledge, there is only one exper-
iment [23] in which the luminescence at higher (4
K) temperature and B645T is measured in order to
estimate the e–h correlation energy.

Breaking of the magnetic translation symmetry by
a lateral con�nement in a qdot makes the lowest X−

triplet state bright. Highly nontrivial PL and absorp-
tion spectra arise even in the 1LL approximation.
These spectra contain information about the energy
levels and particle correlations in the system. Let us
stress that a calculation of X 0 and X− energy levels in
a qdot, which includes LL mixing, is available [24].
The absorption coe�cient is also reported in that pa-
per. The di�erences with our work are the following.
First, we consider both absorption and PL. Second,
we trace the changes in the ground-state (g.s.) wave
function and charge rearrangements as the magnetic
�eld is varied. Finally, we consider larger qdots with
X 2− and X 3− complexes (unbound in a qwell). It will
be seen below that indications of collective e�ects are
evident even in these relatively small systems.
The plan of the paper is as follows. The model and

certain general statements are explained in Section 2.
The next section presents results for particular sys-
tems. We start with the exciton and end up with the
X 3− complex. Finally, a few concluding remarks are
given.

2. The model

We consider the two-dimensional motion of Ne
electrons and Nh holes in an external parabolic po-
tential and a perpendicular magnetic �eld (along the
z-axis). In particular, we will study the Nh = 1 and 0
systems, which are the ones participating in interband
absorption and recombination processes. The unit of
length is

√
2 times the magnetic length. In the 1LL

approximation, the Hamiltonian is written as

H (Ne; Nh) =
(
˝!ec
2
+Eez

)
Ne+

(
˝!hc
2
+Ehz+Egap

)
Nh

+EeZeeman + EhZeeman + Vconf + Vcoul: (1)

Hamiltonian (1) is intended to model a GaAs qdot
with a thickness of 20 nm in the z-direction. The
meaning of the di�erent terms entering H is evident.
The speci�c qdot characteristics are re
ected in the
con�nement energies along the z-direction, Ez, the
in-plane con�nement potential, Vconf =

∑
i vconf (ri),

and the z-averaged Coulomb interactions, Vcoul=
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∑
i; j vcoul(rij). We will use the expression

vcoul(r) =±3:316 �
√
B
1
r
(meV); (2)

for the pair Coulomb interactions (B in Teslas), and

vconf (r) =
3:316
B

�Kr2 (meV); (3)

for the one-particle con�nement potential. Even these
simple expressions lead to very interesting physi-
cal results. Notice that 1

√
2 times the characteristic

Coulomb energy, e2=(�lB), equals 3.316
√
B in our

units. The constant � = 0:6 is used to simulate the
z-averaging of the Coulomb interactions in the 20
nm-wide qdot [4,25]. We �xed it by requiring the
binding energy of the uncon�ned (vconf set to zero)
X−
t relative to the X 0 to be 0.6 meV at B= 17T. This
is a representative value [18]. On the other hand, the
dimensionless constant K will be �xed to 7.0 in order
to obtain a “�lling factor” around 1

3 for B ≈ 30 T,
also a common situation met in the experiments [18].
The only nontrivial terms entering Eq. (1) are Vconf

and Vcoul. They should be diagonalized in a basis of
Slater 1LL functions. The energies coming from the
diagonalization processes will be denoted �, and the
wave functions will be used to compute physical ob-
servables. Note that, in the 1LL, the electron (hole)
angular momentum is a non-positive (non-negative)
number. Thus, the total angular momentum is written
M =Me +Mh =−|Me|+Mh.
In a GaAs electron system, the validity of the 1LL

approximation can be stated by comparing the excita-
tion energy to the 2LL, ˝!ec = 1:728B meV, with the
Coulomb energy, 3:316�

√
B meV. Thus, for B/1

T the 1LL approximation works. Spin excitations
are lower in energy, �EZeeman ≈ 0:025BmeV. How-
ever, at temperatures below 2 K and for B¿ 8T,
they cannot be thermally excited. It means that in
both absorption and luminescence the transition starts
from the lowest optically active state. When holes
are created, the 1LL approximation becomes valid
at higher �elds. If we take for the heavy hole mass
in the xy plane the value �h = 0:11m0 [26], then
˝!hc ≈ 1BmeV. The 1LL approximation works for
B/4 T. Below, we present results obtained in the
1LL approximation for 8 T6B660T.
On the other hand, expression (1) assumes that the

particles are sitting on the �rst qwell sub-band. As it

was stressed in Ref. [21], this may be a rough ap-
proximation. For a 20 nm qwell, the second electronic
sub-band is around 30 meV higher, but the second hole
sub-band is only 6 meV higher (a heavy hole mass
�z
h ≈ 0:38m0 is assumed). Our �rst sub-band approx-
imation is qualitatively valid in the present situation,
and will improve for narrower wells.

2.1. Interband absorption and luminescence
(general grounds)

Interband absorption and luminescence will be stud-
ied at temperatures T.2 K, i.e. typically lower than
spin excitation gaps. Thus, the processes proceed from
a unique initial state, which is the g.s. of the polarized
(Ne; 0) system in absorption, and the lowest optically
active state of the (Ne + 1; 1) system in emission. In
general, these processes take place in di�erent angu-
lar momentum channels. For absorption, the incident
light is supposed to be circularly polarized and propa-
gating along the z-direction. Also circularly polarized
light is supposed to be measured from the qdot lumi-
nescence.
A simple two-band model, with bands split by the

Zeeman energy, will be used. The conduction-band
(ms =± 1

2 ) mass is �e = 0:067m0, and the heavy hole
band, mj =± 3

2 , shows anisotropic e�ective masses,
�h = �xy

h = 0:11 m0; �z
h = 0:38m0. LL mixing in the

mj = 3
2 branch [27] will be neglected. mj =− 3

2 will
be called the spin-up hole branch, and mj = 3

2 – the
spin-down branch. For propagation along the z-axis,
the allowed transitions are mj =− 3

2 → ms =− 1
2

for right-handed circular polarization (RHCP), and
mj = 3

2 → ms = 1
2 for left-handed circular polariza-

tion (LHCP) [27,28].
The dipole approximation is used for the interaction

Hamiltonian, i.e. −E ·D. In the 1LL, the interband
dipole operator takes the form

D =
epcv
m0!

∑
l¿0
(e†−l;↓h

†
l;↑ + e†−l;↑h

†
l;↓) + h:c:; (4)

where pcv is the GaAs interband constant. The reason
for not including the light hole in Eq. (4) is twofold.
First Ez is around 6meV higher (�z

lh ≈ 0:09m0), thus
its absorption or luminescence lines are shifted. Sec-
ond, the constant p2cv is three times smaller for light
holes. Notice that the interaction Hamiltonian pre-
serves total angular momentum.
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In our (Ne; Nh) systems with Nh = 0; 1, the states
may be classi�ed according to the symmetry of the
electronic subsystem. For example, the Ne = 2 sys-
tem may be in a spatially antisymmetric (triplet) state,
or in a spatially symmetric (singlet) state. We will
present calculations only for spatially antisymmetric
states. They are the only ones appearing in LHCP,
and the ones associated to the most intense lines in
RHCP [24]. The wave functions may be written as
 = �antisymmcoord �symmspin , or in a second quantization for-
malism,

| (Ne; 0)〉=
∑

Cl1l2 :::lNe e
†
−l1 ;↑e

†
−l2 ;↑ · · · e

†
−lNe ;↑|0〉; (5)

| LHCP(Ne + 1; 1)〉

=
∑

Cl1l2 :::;lNe+1 ;lhe
†
−l1 ;↑e

†
−l2 ;↑ · · · e

†
−lNe+1 ;↑h

†
lh ;↓|0〉;

(6)

| RHCP(Ne + 1; 1)〉= 1√
Ne

∑
Cl1l2 :::lNe+1 ;lh

×(e†−l1 ;↓; e
†
−l2 ;↑ · · · e

†
−lNe+1 ;↑

+e†−l1 ;↑e
†
−l2 ;↓ · · · e

†
−lNe+1 ;↑

+ · · ·+ e†−l1 ;↑e
†
−l2 ;↑ · · · e

†
−lNe+1 ;↓)h

†
lh ;↑|0〉: (7)

 LHCP corresponds to a spin-polarized electronic
sub-system, and  RHCP to a not completely po-
larized state. In the pure electron system, the
sum runs over angular momentum states obeying
06l1¡l2¡ · · ·¡lNe and �xed M =−l1 − l2 −
· · · − lNe . In the one-hole system, the total angular
momentumM =−l1 − l2 − · · · − lNe+1 + lh is �xed.
Diagonalization of Vconf + Vcoul in Eq. (1) leads

to the determination of eigenenergies and wave func-
tions. Transition energies, transition probabilities and
charge densities of the relevant states are computed
from these results. The transition energies are given
by

˝!= Egap + Eez + Ehz +
˝!ec
2
+
˝!hc
2
+ EeZeeman

+EhZeeman + �(Ne + 1; 1)− �(Ne; 0); (8)

where � are the energies coming from Vconf + Vcoul.
We took the values Egap = 1510; Eez = 11; E

h
z =

2; ˝!ec=2 = 0:864 B; ˝!hc =2 = 0:526B; EeZeeman =

−0:025mesB, EhZeeman =−0:016mhsB, for the quantities
entering Eq. (8), where energies are given in meV
and B in Teslas. Our treatment of Zeeman energies of
both electrons and holes is very simple. We used the
value ge =−0:44 for the electron Land�e factor and
extracted the hole energy from the observed splitting
of X 0 luminescence lines in RHCP and LHCP [18].
The hole spin projection is conventionally written as
mhs =± 1

2 . Actually, the Zeeman energy shows a non-
linear dependence on B [29]. Notice, however, that
Egap, ˝!c and EZeeman are important in determining
the absolute position of a given absorption or PL line,
but not its relative position with respect to X 0 in the
same polarization.
The absorption coe�cient of a dot is given by

�(!) =
4�2!
˝cV

∑
f
|〈f|e ·D|i〉|2�(!− !�); (9)

where |i〉 is the g.s. of the (Ne; 0) system, f are the
states of the (Ne + 1; 1) system in the same angular
momentum tower and ˝!� is their energy di�erence
computed from (8). e is the light polarization vector,
c the light velocity, and V is the volume of absorp-
tion. We have used a phenomenological width, � =
0:8 meV, to replace the delta function by a Lorentzian

�(x)→ �=�
�2 + x2

: (10)

In luminescence, we compute the matrix elements
|〈f |e ·D|i〉|2, assuming that |i〉 is the lowest state of
the Nh = 1 system.

3. Results

We present results in th following interval of mag-
netic �eld values, 8 T6B660 T. Computations are
carried out for spin polarized electronic systems, with
total spin M e

s = Ne=2, which contribute to the LHCP
spectra. The energies of the incompletely polarized
states with M e

s = Ne=2− 1, entering the RHCP spec-
tra, are obtained by adding the corresponding Zeeman
shifts.

3.1. Binding energies of excitonic complexes

We draw in Fig. 1 the g.s. energies, �, coming
from the diagonalization of Vconf + Vcoul in Eq. (1) as
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Fig. 1. g.s. energies of the excitonic XNe− complexes, denoted
also as (Ne + 1; 1) in the main text.

a function of the applied magnetic �eld. The polar-
ized systems (Ne + 1; Nh) = (1; 1); (2; 1) (3; 1) and
(4; 1) are shown. The common notation for the exci-
tonic systems (1, 1) and (2, 1) are X 0 and X−, so that
the charged complex (4, 1) may be denoted X 3−. Note
that the slopes of the (2, 1), (3, 1) and (4, 1) curves are
very similar. It means that the relative binding ener-
gies vary smoothly with B, and that the magnetic mo-
ments of these states take almost the same values. For
example, X 3− is 14:77 meV above X− at B= 30 T,
and 14:29 meV above X− at B= 50 T.
The total angular momenta in the g.s. is a constant,

independent of B, in the smallest systems. It is Mgs =
0 in the exciton, and Mgs =−1 in the triplet X− at
any B. The larger systems, however, undergo abrupt
rearrangements at particular B values. The interplay
between g.s. rearrangements in the (Ne; 0) and (Ne +
1; 1) systems as B is varied has direct consequences on
absorption and luminescence, as will be seen below.
Note that, unlike pure electron systems, when

holes are present the Hilbert space in a given
M =−|Me|+Mh sector is not �nite. We enlarged
the included subspace until convergence is reached.
For example, in the (4, 1) system at B= 40 T,
2374 many-particle states (i.e. all of the states in
156|Me|635) are enough to reach convergence for
the lowest energy eigenvalue in the M =−15 tower.
The low-lying energy levels of X 3− at B= 35 T are

shown in Fig. 2 as an example. Energy distances be-

Fig. 2. Low-lying energy levels of the polarized X 3− complex at
B = 35 T.

Fig. 3. Absorption coe�cient of the neutral (Ne = 0) qdot at
B = 40 T.

tween the lowest adjacent levels are around 0:5 meV,
the same as in the three-electron system at this value
of the magnetic �eld.

3.2. Interband absorption

As previously stated, temperatures are low enough
for absorption to proceed from the g.s. of the
Ne-electron system. It means that spin 
ips should
not be thermally induced, i.e. T.2 K for B¿ 8 T.
We show in Fig. 3 the absorption coe�cient for the

Ne = 0 qdot at B= 40 T. The process under consider-
ation, (0; 0)→ (1; 1), goes through the M = 0 chan-
nel. The main properties of the curve drawn in Fig. 3,



338 A. Gonzalez, E. Men�endez-Proupin / Physica E 8 (2000) 333–341

Fig. 4. Absorption coe�cient of the Ne = 1 qdot at B = 8 and
40 T.

i.e. dominance of the exciton g.s. and monotony, are
visible also at any other value of the magnetic �eld.
The main e�ect of B is to reinforce the dominance
of the �rst line. The threshold for absorption is deter-
mined by the exciton g.s. energy, and the maximum
dipole squared behaves like B0:78.
The absorption coe�cient of the negatively charged

dot, Ne = 1, is shown in Fig. 4. The (1; 0)→ (2; 1)
process takes place in the M = 0 sector. At B= 8 T,
a structure of isospaced bands is seen in the spectrum
at higher energies. Most of these lines are suppressed
already at B= 40 T. The threshold for absorption and
maximum strength transition are determined by the
lowest X− state in the M = 0 tower. As a function of
B, we get D2 ∼ B0:79 at the maximum.
The absorption thresholds for the smallest systems,

Ne = 0 and 1, are smooth functions of B, signalling
that the states entering the transition (Ne; 0)→ (Ne +
1; 1) do not change qualitatively as B is raised. For
larger systems, however, there is an abrupt decrease
in the threshold for �elds around 10 T (“�lling factor”
near one), and small steps at higher �elds. The steps
are originated by the di�erent rates of change of Mgs

in the (Ne; 0) and (Ne + 1; 1) systems (see Table 1).
Let us consider, for example, the (3; 0)→ (4; 1) pro-
cess. For B610 T, the process goes from the g.s. of
(3; 0) to the excited states of X 3− with M =−3. For
B¿ 10 T, the g.s. of (3, 0) moves toM =−6, a sector
which contains the g.s. of (4, 1). Thus, the threshold
is lowered. Every time one of the systems rearranges,
there is a step like change in the absorption thresh-

Table 1
Ground-state orbital angular momentum in the Ne = 2 and 3 dots

B [T ] Mgs(2; 0) Mgs(3; 1) Mgs(3; 0) Mgs(4; 1)

8 1 3 3 6
16 – – 6 6
20 3 3 6 9
25 – – 9 9
30 3 3 9 12
35 5 3 12 12
40 5 5 12 15
45 – – 15 15
50 7 5 15 18
58 7 7 – –

old. The actual (experimental) pro�le is expected to
be smoothed because of temperature e�ects.
Of course, not only threshold changes, but the whole

spectrum is restructured. We show in Fig. 5 the ab-
sorption in the Ne = 2 dot (X 2− formation) at B= 8 T
and 50 T. At B= 8 T, the spectrum is similar to the
X− spectrum. The added electron is placed in an outer
orbit because the inner orbitals are �lled. For higher
�elds, there is place for the new electron in the core
region, but the minimization of energy causes a global
restructuration of the charge density in the dot, as will
be seen below. The added pair losses its identity. No-
tice that for B¿ 10 T there are two very distinct lines
in the spectrum. One is the threshold (the transition to
the lowest state of (3, 1)), and the second is the max-
imum, which is 7–4 meV above the threshold.
The dipole squared at maxima as a function of B are

drawn in Fig. 6. Besides lowest state rearrangements,
there are manifestations of collective e�ects even in
these small systems. A decrease of absorption in the
Ne = 2 and 3 systems at “�lling factors” � ≈ 1

2 ;
1
3 and

1
5 is evident from Fig. 6.

3.3. Magnetoluminescence

The second part of Fig. 5 shows the square of the
dipole matrix elements corresponding to the lumines-
cence of the Ne = 2 dot at B= 40 T. Only transitions
starting from the g.s. of (3, 1) are considered. Notice
that the lowest state (2, 0) gives the strongest line, ap-
proximately 50 times higher than the next one. This
is the common situation in our luminescence calcula-
tions for any of the systems under study. The strongest
line corresponds to the transition from the g.s. of
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Fig. 5. Absorption and PL in the Ne = 2 dot.

(Ne + 1; 1) to the lowest state of (Ne; 0) in the same
angular momentum tower. The higher states of (Ne; 0)
give negligible contributions.
Luminescence in the Ne = 0, and 1 dots is mono-

tonic with B because the initial and �nal states partic-
ipating in it are �xed. Exciton luminescence proceeds
in the M = 0 channel, and X− luminescence in the
M =−1 sector. In the latter case, the absorption and
luminescence channels are di�erent. With increasing
B, the X 0 peak intensity increases, as in absorption,
but the X− intensity decreases. We obtained D2 ∼
exp(−0:018B) the maximum.
For larger systems, the luminescence shows non-

monotonic behaviour because of lowest state rear-
rangements and collective e�ects, as in absorption. As

Fig. 6. Squared dipole matrix elements of the strongest absorption
lines in the Ne-electron qdots vs. B.

Fig. 7. Luminescence maxima in the Ne-electron qdots vs. B.

a rule, the channels for absorption and PL are di�er-
ent in these systems. The luminescence maxima as a
function of B are drawn in Fig. 7.

3.4. Charge densities

Electron and hole charge densities inside the dot
for the relevant states participating in absorption and
luminescence are presented in this section. For elec-
trons we found more convenient to draw the di�er-
ence �′

e = �e(Ne + 1; 1)− �e(Ne; 0), which gives the
density “added” to the dot.
Fig. 8 shows the �nal-state densities in the absorp-

tion situations discussed in Fig. 5. For the Ne = 2 dot
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Fig. 8. Charge densities in �nal states with maximal absorption.
The same cases as in Fig. 5 are considered.

at B= 8 T, the added electron and hole densities are
almost identical. The exciton keeps its identity inside
the dot. At B= 50 T, however, the added pair causes
a redistribution of the charge density of the initial
two-electron state.
On the other hand, as shown above, the relevant

states participating in luminescence transitions are
the g.s. of (Ne + 1; 1) and the lowest state of the
Ne-electron system in the same angular momentum
sector. We show in Fig. 9 the densities of these states
in the Ne = 2 dot at B= 40 T. These curves are typ-
ical. The exciton is annihilated from a distribution

Fig. 9. Charge densities of the state with maximal oscillator
strength in the luminescence of the Ne = 2 qdot at B = 40 T.

very similar to the isolated exciton g.s. (also shown
in the �gure for comparison).

4. Concluding remarks

We have studied few-electron systems and excitonic
complexes (with one hole) in qdots under intense mag-
netic �elds and low temperatures. In 1- and 2-electron
qdots the g.s. angular momentum is independent of
the magnetic �eld intensity. However, larger systems
undergo abrupt rearrangements at particular B values,
a fact that is re
ected in the optical absorption and PL.
We computed the interband optical properties

of these systems. In absorption, the initial state
is the polarized ground state of Ne electrons (for
temperatures.2 K) and the �nal states are the states
of Ne + 1 electrons and one hole. The main result of
these computations is the nonmonotonic behaviour of
the absorption maxima in the larger (Ne = 2 and 3)
systems as the �eld is varied (Fig. 6). This result can
be understood as a consequence of ground state rear-
rangements and collective e�ects. We have presented
typical charge densities in support of this picture. We
found a reduction of absorption at “ �lling factors”
1
2 ;

1
3 and

1
5 .

For luminescence events, we have considered
the recombination from the g.s. of Ne + 1 electrons
and a hole. At a given magnetic �eld intensity, the
angular momentum of this state may be di�erent
from the Ne-electron g.s. angular momentum. Thus,
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intrinsic absorption and luminescence may proceed
through di�erent channels. Of particular interest is
that, opposite to the qwell case, the negatively charged
exciton X− is bright in luminescence. This is a conse-
quence of the qdot lateral con�nement. Furthermore,
for very high B the X− complex recovers its dark
character as compared with the other complexes here
studied. On the other hand, the maximum of the re-
combination oscillator strength is a monotonic func-
tion of B for qdots with 1 or 2 electrons and a hole,
but it is nonmonotonic for qdots with more electrons,
showing collective e�ects even in these small dots.
Although our calculations for �nite systems with a

smooth lateral con�nement cannot be easily extrap-
olated to the in�nite limit, our results suggest that
many-body e�ects should be taken into account in
the computation of the X− luminescence in a qwell.
Whittaker and Shields [21] and Wojs et al. [22] have
used a three-particle model for the X−. This model is
indeed useful at very high magnetic �elds. At inter-
mediate values of B, the magnetoexciton size, which
is ∼ 2lB ∼ 50=√B nm, becomes comparable to the
inter-electronic distance, around 20 nm for a typical
carrier density of 1–2×1011 cm−2. Many-body e�ects
should take care of observed dependence of the PL
maximum with the �lling factor.
We have not attempted a more sophisticated cal-

culation in these systems because of the absence of
experimental results for qdots in very intense mag-
netic �elds. Nevertheless, our simple approach (1LL,
one qwell subband, parabolic lateral con�nement, un-
realistic Zeeman energies and z-averaged Coulomb
interactions) captures the essential physics and indi-
cates the importance of collective e�ects even in small
qdots.
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