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Resonant hyper-Raman scattering in spherical quantum dots
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A theoretical model of resonant hyper-Raman scattering by an ensemble of spherical semiconductor quan-
tum dots has been developed. The electronic intermediate states are described as Wannier-Mott excitons in the
framework of the envelope function approximation. The optical polar vibrational modes of the nanocrystallites
~vibrons! and their interaction with the electronic system are analyzed with the help of a continuum model
satisfying both the mechanical and electrostatic matching conditions at the interface. An explicit expression for
the hyper-Raman scattering efficiency is derived, which is valid for incident two-photon energy close to the
exciton resonances. The dipole selection rules for optical transitions and Fro¨hlich-like exciton-lattice interac-
tion are derived: It is shown that only exciton states with total angular momentumL50,1 and vibrational
modes with angular momentuml p51 contribute to the hyper-Raman scattering process. The scattering spec-
trum and resonance profile are calculated for spherical CdSe zinc-blende-type nanocrystals. Their dependence
on the dot radius and the influence of the size distribution on them are also discussed.
@S0163-1829~99!00628-1#
d
no

no
ee

, t
in
y
an
t
dg
m
o

e

a
er
-

i
,

na
s
r

u
nl
c
c
a

tical

er-
e
la-
. As
the
ed
r-

ces.
out

ical

pts
n of
ned
for
to

Sec.
of
l re-
ec-

nd

on-

f
a
t
ed
I. INTRODUCTION

The research on semiconductor quantum dots~QD’s! has
undergone a dramatic increase in recent years, stimulate
their foreseen applications in optics and electronics tech
ogy and also due to their nonlinear optical properties.1 Quan-
tum dot systems based on III-V materials as well as na
crystallites of II-VI compounds embedded in glass have b
thoroughly investigated~for a review see Ref. 2!. Among the
scattering mechanisms present in polar semiconductors
optical phonon emission is known to play a dominant role
QD’s, which can be experimentally investigated by emplo
ing a number of methods, such as infrared absorption
Raman scattering.3–10 The successful interpretation of ligh
scattering by optical phonons relies upon a good knowle
of the normal vibrational modes. In recent years a pheno
enological continuum theory of optical phonons in nan
structures has been elaborated,11–13 which is in good agree-
ment withab initio calculations and allows us to explain th
resonant Raman-scattering intensities of phonon modes
duced by interface roughness in quantum wells.14 The theory
has also been generalized to deal with quantum wires
quantum dots, and used to study resonant Raman scatt
in these systems.15–17 In particular, the formalism is appli
cable to II-VI semiconductor nanocrystallites embedded
glass since they can have dimensions as small as 13 Å
which case the mechanical confinement of optical vibratio
modes has strong effects~in a QD the concept of phonon a
an excitation in a periodic system labeled by a wave vecto
lost, and, therefore, we will use the termvibron to denote the
QD vibrational modes!. Raman scattering provides a usef
tool to investigate experimentally these vibrons, but o
spherically symmetric modes are accessible to this te
nique. In the search of complementary experimental te
niques, which can overcome this limitation, hyper-Ram
PRB 600163-1829/99/60~8!/5513~10!/$15.00
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~HR! spectroscopy appears to be a suitable candidate.18 Re-
cently, HR spectroscopy has been used to study the op
vibrational modes of CdS and CuBr QD’s.19–21 In this paper
we present a theoretical model that allows us to study hyp
Raman scattering~HRS! by optical vibrons under resonanc
conditions, and illustrate it by performing numerical calcu
tions of the scattered intensities in CdSe nanocrystallites
far as the exciton-lattice interaction is concerned only
Fröhlich coupling is considered here, though it is admitt
that the deformation potential interaction might be of impo
tance for photon energies far from the excitonic resonan
The selection rules for the scattering process are worked
and it is shown that in fact HRS can be used to probe opt
vibrations with nonspherical symmetry.

The paper is organized as follows: The main conce
underlying the hyper-Raman scattering and the descriptio
the nanocrystal vibrational modes and excitons are outli
in Sec. II. Section III contains the theoretical expressions
the matrix elements and HRS efficiency, which are used
analyze the selection rules of the scattering process. In
IV the calculation of the exciton and vibrational spectra
CdSe nanocrystallites are presented, and the numerica
sults obtained for the HRS efficiency are also discussed. S
tion V is devoted to the main conclusions of the work a
final comments.

II. THEORY

Hyper-Raman scattering is a nonlinear process that c
sists of the absorption of two photons of frequencyv i , wave
vectorkW i , and polarizationeW i ( i 51,2), and the emission o
one photon (vs ,kW s ,eW s! with the simultaneous excitation of
number of vibrational modes.22 Due to its nonlinear nature, i
is convenient to express the HR yield by the normaliz
~intensity-independent! scattering cross section,23
5513 ©1999 The American Physical Society
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1

I i

d2s i j

dvsdVs
5

1

I i I j

d2Pi j

dvsdVs
, ~1!

I i and I j being the excitation intensities andd2Pi j /dvsdVs
being the scattered power per unit of solid angleVs and unit
frequency. The scattered power can be related to the p
ability per unit time of a single scattering event in a QD
radiusR, so that we can express the normalized differen
cross section as23

1

I i

d2s i j

dvsdVs
5

V3

~2p!2

vs
3h ih jhs

3

\3v jv ic
5

3(
p

uM p~v i ,v j ,vs ;R!u2

3d~v i1v j2vp2vs!, ~2!
n

oc
i

D

th
d
n
c
d

b-

l

whereV is the normalization volume,h i ( i 51,2) andhs are
the nanocrystal refraction indices atv i andvs , respectively,
c is the velocity of light in vacuum, andM p is the scattering
amplitude. Each scattering event is accompanied by
emission of a vibron of frequencyvp , and the total scatter
ing probability is obtained after summing over all possib
vibron statesp. Only vibron emission~Stokes! processes will
be considered in this paper. The delta function in Eq.~2! can
be eventually replaced by a LorentzianD(vs) with a vibron
lifetime tp5\/Gp on the line broadening of the HR spe
trum.

The scattering amplitude in Eq.~2! can be calculated in
fourth-order perturbation theory. Under resonance conditi
the important contributions toM p are given by
from
n

d

e

of the
M p
(a)5 (

m1 ,m2 ,m3

^FuĤE2R
(s) um3&^m3uĤE2Lum2&^m2uĤE2R

( j ) um1&^m1uĤE2R
( i ) uI &

~\vs2Em3
1 iGm3

!~\v i1\v j2Em2
1 iGm2

!~\v i2Em1
1 iGm1

!
. ~3!

The exciton created in the stateum1& after the absorption of a photon (v i ,kW i ,eW i) is first scattered to the stateum2& by the
absorption of a second photon (v j , kW j ,eW j ). In the next step, the interaction with the lattice induces an excitonic transition
um2& to um3&, accompanied by the creation of a vibron of frequencyvp . The exciton finally recombines emitting a photo
(vs ,kW s ,eW s). In Eq. ~3!, uI & (uF&) is the initial ~final! state of the scattering process, andEm i

and Gm i
are the energies an

lifetime broadenings of the excited electronic statesum i& in the QD.ĤE2L and ĤE2R are the Hamiltonian operators for th
interaction of the electronic system with the lattice and radiation field, respectively.

Since the interesting range of\v i1\v j for resonant HR spectroscopy lies around the fundamental absorption edge
QD Eg1E0, the relevant resonances in the matrix element~3! will occur at energies\v i1\v j5Em2

and\vs5Em3
~outgoing

resonance!.
Another contribution to the scattering amplitude is

M p
(b)5 (

m1 ,m2 ,m3

^FuĤE2R
(s) um3&^m3uĤE2R

( j ) um2&^m2uĤE2Lum1&^m1uĤE2R
( i ) uI &

~\vs2Em3
1 iGm3

!~\v i2\vp2Em2
1 iGm2

!~\v i2Em1
1 iGm1

!
. ~4!
ere,
iton

e

d-

,

The examination of the energy denominators in Eq.~4!
clearly indicates thatuM p

(b)u!uM p
(a)u in the resonance regio

\v i1\v j;Eg1E0. Therefore, the contribution fromM p
(b)

has been dropped out from our theoretical model.
Finally, it must be noted that in real samples the nan

rystallites present a distribution over size and shape. We
tend to study here HRS by an ensemble of spherical Q
characterized by a distribution over radiiF(R). The corre-
sponding average~intensity-independent! HRS efficiency3 is
given by

K d2SHR
i j

dvsdVs
L 5

1

^VD&E 1

I i

d2s i j

dvsdVs
F~R!dR, ~5!

where^VD& is the average quantum dot volume.
The intermediate electronic virtual states appearing in

HR process@see Eq. ~3!# are taken to be size-confine
Wannier-Mott excitons, treated in the framework of the e
velope function approximation. The details of this approa
can be found in Ref. 17, where it is employed for the stu
-
n-
’s

e

-
h
y

of resonant Raman scattering in QD’s. We summarize h
for notation purposes, the main expressions of the exc
model.

The eigenfunctions of the full Hamiltonian including th
electron-hole Coulomb interaction~exciton wave functions!
are expanded in terms of the electron-hole pair~EHP! states
Fa,L,M(rWe ,rWh),17

Cm~rWe ,rWh![CN,L,M ,P~rWe ,rWh!

5(
a

CN,L,M ,P~a!Fa,L,M~rWe ,rWh!, ~6!

whereN,L,M , andP are the quantum numbers correspon
ing to the energy, the squared total angular momentumLC 2,
its projection along thez axis L̂z , and the inversion operator
respectively. a is an abbreviated notation fora
[(ne ,nh ,l e ,l h). Note that the state defined by Eq.~14! has
definite parity:P51 ~even parity! if l e1 l h is even andP
521 ~odd parity! if l e1 l h is odd.
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In polar materials, the long-range electrostatic field as
ciated with the optical vibrations introduces the Fro¨hlich
mechanism. It is now well established that despite its dipo
forbidden character,3 the Fröhlich interaction plays an impor
tant role in one-phonon Raman scattering by bulk zincble
semiconductors.24 On the other hand, in systems whichlack
translational invariance, like QD’s, Fröhlich-induced Raman
scattering becomes allowed and, therefore, it plays a do
nant role. Accordingly, in our model for the HRS we co
sider only the Fro¨hlich-like interaction between excitons an
vibrons. In order to describe the polar optical vibration
modes~vibrons! of spherical QD’s we rely upon the resul
of Ref. 15, where a macroscopic continuum model coupl
the mechanical displacement and the electrostatic potent
developed. The normal modes are labeled by a set of int
numbersp[(np ,l p ,mp), which are related to their symme
try properties. More details on the calculation of the d
placement, electrostatic potential and frequencyvnp ,l p

asso-
ciated to these modes can be found in Refs. 15 and 16.
exciton-vibron interaction Hamiltonian operator can be w
ten as

ĤE2L5eŵF~rWe!2eŵF~rWh!, ~7!

where2e (e.0) is the electron charge and

eŵF~rW !5
CF

AR
(

np ,l p ,mp
A vL

vnp ,l p

Fnp ,l p
~r !

3@Yl p ,mp
~V!b̂np ,l p ,mp

1H.c.#. ~8!

Here,b̂np ,l p ,mp
is the vibron annihilation operator,CF is the

Fröhlich constant, and H.c. means Hermitian conjugate. T
explicit form of the radial functionFnp ,l p

(r ) can be found in

Ref. 16, andYl p ,mp
(V) ( l 50,1, . . . , andm52 l , . . . ,l ) are

the spherical harmonics.25 Sincevnp ,l p
;vL (vL is the bulk

LO phonon frequency at theG point!, we will omit hereafter
the factorAvL /vnp ,l p

in Eq. ~8!.

III. MATRIX ELEMENTS AND SELECTION RULES

In this section we analyze in detail the matrix eleme
appearing in Eq.~3!, and derive from them the selectio
rules for the exciton and vibron states which participate
the HR process. The matrix elements^m1uĤE2R

( i ) uI & and

^FuĤE2R
(s) um3& for direct allowed optical transitions betwee

valence (v) and conduction (c) bands are proportional to th
exciton overlap integral given by17

f m[ f N,L,M ,P5E CN,L,M ,P~rW,rW !d3rW

5dL,0dM ,0dP,1 (
ne ,nh

(
l

~21! lA2l 11

3CN,0,0,1~ne ,nh ,l ,l !E
0

`

Rne ,l~r !Rnh ,l~r !r 2dr, ~9!

whereRn,l(r ) is the radial part of the single-particle wav
function. Hence, the annihilation of the first incoming phot
-
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with frequencyv i creates an exciton in the state with ze
angular momentum and even paritym1[(N1 ,L150,M1
50,P151), and analogously, the scattered photon of f
quencyvs is emitted upon the recombination of an excito
in the statem3[(N3 ,L350,M350,P351). Both exciton
states haveL50 andP51 because the interband transitio
induced by the radiation field require the electron and hole
have equal orbital angular momentum quantum numberl e
5 l h .

A different situation is found when considering the sc
tering between exciton states induced by the second inc
ing photon@matrix element̂ m2uĤE2R

( j ) um1& in Eq. ~3!#. We
can consider onlyintraband excitonic transitions, whose ma-
trix element can be written, in the dipole approximation,26 as

^m2uĤE2R
( j ) um1&5E Cm2

* ~rWe ,rWh!~Ĥe2R
( j ) 2Ĥh2R

( j ) !

3Cm1
~rWe ,rWh!d3rWed

3rWh , ~10!

where

Ĥn2R
( j ) 5

e

mn

1

AV
A2p\

v jh j
2~eW j•pC n! ~n5e,h!, ~11!

pC n52 i\¹W n is the linear momentum operator, andme (mh)
is the electron~hole! effective mass~taken to be positive!.

Using expansion~6! in Eq. ~10! we get

^m2uĤE2R
( j ) um1&

5e
1

AV
A2p\

v jh j
2 (

a,a8
CN2 ,L2 ,M2 ,P2

* ~a8!CN1 ,L1 ,M1 ,P1
~a!

3K a8,L2 ,M2U eW j•pC e

me
2

eW j•pC h

mh
Ua,L1 ,M1L . ~12!

Let us now concentrate on the electron part of the ma
element appearing in Eq.~12!. By making use of the operato
identity pC e5( ime /\)@Ĥe ,rWe#, where Ĥe is the single-
electron Hamiltonian, we have found that~see Appendix!

K ne8 ,nh8 ,l e8 ,l h8 ,L2 ,M2U eW•pC e

me
Une ,nh ,l e ,l e,0,0L

5dn
h8 ,nh

d l
h8 ,l h

dL2,1dP2 ,21aM2

iR

\

1

A3
~En

e8 ,l
e8
2Ene ,l e

!

3FA l e11

2l e11
d l

e8 ,l e112A l e

2l e11
d l

e8 ,l e21G
3Gne ,l e˜n

e8 ,l
e8
, ~13!

Gn,l˜n8,l 85
1

RE0

`

Rn8,l 8~r !Rn,l~r !r 3dr. ~14!
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The final expression for the matrix element~12! can be ar-
ranged in the form

^m2uĤE2R
( j ) um1&5

ieE0R̄2

\R

1

AV
A2p\

v jh j
2@Fm1˜m2

(e) 2Fm1˜m2

(h) #,

~15!

where we have introduced the energyE05\2/2m0R̄2 (R̄ is
the average QD radius! to makeF (e,h) dimensionless. The
explicit expression forFm1˜m2

(e) is

Fm1˜m2

(e) 5dL2,1dP2 ,21aM2

3 (
a,a8

d l e ,l h
d l

h8 ,l h
dn

h8 ,nh
Cm2

* ~a8!Cm1
~a!

3S R

R̄
D2 ~En

e8 ,l
e8
2Ene ,l e

!

A3E0
FA l e11

2l e11
d l

e8 ,l e11

2A l e

2l e11
d l

e8 ,l e21GGne ,l e˜n
e8 ,l

e8
. ~16!

A similar expression holds forFm1˜m2

(h) after the exchange o

the subscriptse andh.
An important consequence to be drawn from Eq.~16! is

that after the absorption of the second incoming photon,
exciton must be in the statem2[(N2 ,L251,M250,61,P2
521). Otherwise stated, two-photon absorption genera
excitons inL51 states, in contrast to one-photon transitio
for which the final exciton state is necessarilyL50. More-
over, the factord l 8,l 61 in Eq. ~16! introduces the parity se
lection ruleP151˜P2521, indicating that the intraband
transitions are accompanied by a change in the parity of
excitonic state. If the incident light is linearly polarized wi
eW j i ẑ thenaM2

5dM2,0 ~see the Appendix!, whereas for circu-

lar polarizationeW j i( x̂6 i ŷ)/A2, we haveaM2
5dM2 ,61 ( x̂,ŷ,

and ẑ represent some system of orthogonal axes attache
the laboratory frame!. Hence, theL251 excitonic states par
ticipating in the HRS process haveM250 for linearly polar-
ized light andM2561 for circularly polarized light.

Now we turn to the matrix element of the exciton-latti
interaction^m3uĤE2Lum2&. If we select the vibron creation
terms in Eq.~8! and make use of Eq.~6!, we get the expres
sion

^m3uĤE2Lum2&

5
CF

AR
(

a8,a9
CN3 ,L3 ,M3 ,P3

* ~a9!CN2 ,L2 ,M2 ,P2
~a8!

3 (
np ,l p ,mp

^a9,L3 ,M3uFnp ,l p
~r e!

3Yl p ,mp
* ~Ve!2Fnp ,l p

~r h!Yl p ,mp
* ~Vh!ua8,L2 ,M2&,

~17!

which consists again of separated electron and hole co
butions, each of them being a sum of matrix elements
e

s
s

e

to

ri-
f

spherical tensors. Therefore, the method used previously
the intraband exciton-photon matrix elements applies a
here. By following that procedure, and considering thatL2
51 andL35M350, Eq. ~17! is reduced to

^m3uĤE2Lum2&5
CF

AR
@Hm2˜m3

(e) 2Hm2˜m3

(h) #, ~18!

where

Hm2˜m3

(e) 5d l p,1dmp ,M2

3 (
a8,a9

d l
e9 ,l

h9
dn

h9 ,n
h8
d l

h9 ,l
h8
Cm3

* ~a9!Cm2
~a8!

3
1

A4p
FA l e911

2l e911
d l

e8 ,l
e911

2A l e9

2l e911
d l

e8 ,l
e921GF

n
e8 ,l

e8˜n
e9 ,l

e9

np ,l p , ~19!

F
n8,l 8˜n9,l 9

np ,l p 5E
0

`

Rn9,l 9~r !Rn8,l 8~r !Fnp ,l p
~r !r 2dr.

~20!

An expression analogous to Eq.~19! holds forHm2˜m3

(h) after

the exchange of the subscriptse andh. It follows from Eq.
~19! that the quantum numbers of the emitted vibron a
fixed to bel p51 andmp5M2. The different statesmp can
be discriminated by selecting adequately the polarizationeW j

of the exciting light: M25mp50 if eW j i ẑ and M25mp5

61 if eW j i( x̂6 i ŷ)/A2. Thus, the HR selection rules in
spherical QD can be expressed schematically by the foll
ing sequence of states:

~L150,M150!˜~L251,M250,61!

˜

~ l p51,mp5M2!

~L350,M350!, ~21!

which contrasts with that corresponding to Ram
scattering16,17

~L150,M150! ˜

~ l p50,mp50!

~L250,M250!, ~22!

where only l p50 vibrons can be excited. The compariso
between Eqs.~21! and~22! makes it clear the complementa
riness of both light-scattering techniques to study the vib
tional spectra of spherical QD’s. In particular, we ha
shown that hyper-Raman spectroscopy can be used to in
tigate the l p51 vibronic states, not observable in Ram
scattering. In addition, the analysis of the correspond
resonance profiles~scattering efficiency vs\v i1\v j ) can
be useful to revealL51 exciton states. Of course, the sele
tion rules discussed can be relaxed when going beyond
simplified treatment of the HR process, e.g., including v
lence band mixing. Nevertheless, forR smaller than the bulk
exciton Bohr radius the separation in energy between thehh
and lh levels induced by the confinement should lead to
small amount ofhh-lh admixture.
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Finally, by inserting Eqs.~9!, ~15!, and~18! into Eq. ~3!,
we obtain the following compact expression for the norm
ized scattering cross section:

1

I i

d2s i j

dvsdVs
5s0S R̄

R
D 3

(
np

hs

h ih j

vs
2

v iv j

3uMnp
~v i ,v j ,vs ;R!u2D~vs!, ~23!

whereMnp
is the dimensionless amplitude given by

Mnp
5E0

3 (
m1 ,m2 ,m3

f m3
* @Hm2˜m3

(e) 2Hm2˜m3

(h) #

~\vs2Em3
1 iGm3

!

3
@Fm1˜m2

(e) 2Fm1˜m2

(h) # f m1

~\v i1\v j2Em2
1 iGm2

!~\v i2Em1
1 iGm1

!
,

~24!

s052p
e6

m0
2c5

R̄2

\2v iv j

ueW i•pW cvu2ueW s•pW cvu2

m0
2E0

2

CF
2

E0
2R̄

. ~25!

m0 is the free electron mass, andpW cv is the interband mo-
mentum matrix element between valence and conduc
Bloch functions atkW50. Expression~23! is suitable for the
calculation of the scattered spectrum as a function of the
shift vs2v i2v j . If we are interested in the resonance b
havior of the scattered intensity we can obtain the aver
HRS efficiency by integrating Eq.~5! over vs ,

K dSHR
i j

dVs
L 5

^s0&

^VD& (
np

E F~R!

3
@v i1v j2vnp

~R!#2

v iv j

hs

h ih j
S R̄

R
D 3

3uMnp
~v i ,v j ,v i1v j2vnp

~R!;R!u2dR, ~26!

where^s0& is the average ofs0 over the QD orientations in
the ensemble with the angle arccos(eW i•eW s) fixed.8 For typical
values ofR̄ (;20 Å) andE0 (;10 meV), and the param
eters of Table I a value of 1024 cm MW21 sr21 is estimated
for ^s0&/^VD&.

The total HRS efficiency is obtained making up the su
over topologically nonequivalent diagrams (i↔ j ). From
now on we focus on the degenerate case,i 5 j , v i5v j
5v l , with 2v l in the region around the excitonic trans
tions, which is the usual situation for resonant HRS exp
ments.

IV. SCATTERING INTENSITIES

In the following we consider the radial part of the singl
particle wave functions as the solutions of the infinite barr
spherical well problem. First, we present in Fig. 1~a! the
exciton energies in a CdSe QD as a function of the rad
The material parameters used as input are shown in Tab
Solid and dashed lines correspond toL50 andL51 exci-
tons, respectively. According to Ref. 10 we have taken i
account the penetration of the wave function in the gl
-

n

R
-
e

i-

r

s.
I.

o
s

matrix by using an effective radiusRe f53.36710.9078R ~in
Å!, whereR is the nominal QD radius.

Let us now focus our attention on the vibrational mod
Since the active TO phonon branch of hexagonal Cd
seems to be flat,27 the parameterbT appearing in the isotro-
pic model for the optical vibrations has been taken as
limit bT

2
˜01, with a negative bulk dispersion relationv2

5vT
22bT

2q2. Figure 1~b! illustrates the allowed frequencie
for the l p51 optical vibrons as a function of the QD radiu
Below vL5213 cm21 the confined LO modes can be se
with both longitudinal and transverse components, includ
a surface mode contribution.28 We can observe some bend
ing in the dispersion around 185 cm21, which is identified as
the Fröhlich mode.29 The Fröhlich frequencyvF is related
only to the dielectric constants of the constituent med
vF

25vT
2(ea012eb`)/(ea`12eb`). A strong electrostatic

contribution is expected in the dispersion for vibron freque
cies close tovF . In Fig. 2 we depict the electrostatic pote
tial Fnp,1(r ) as a function ofr for QD radii R511.5 Å,

16.2 Å , and 21 Å. At these radii,vnp,1 equalsvF for np

52, 3, and 4. It can be seen that the electrostatic poten
Fnp,1 shows an enhancement close to the interface when

vnp,1 coincides withvF .
Now, the results obtained with Eqs.~23!–~26! for the

HRS spectrum and resonance profile in CdSe QD’s
shown. The incoming~outgoing! resonances will be denote
by the combination of the letter I~O! and the exciton quan
tum numberN of the corresponding resonant levels. It
important to remember the selection rules already discus
in Sec. II: The relevant incoming resonances take place
2\v l5EN,L51,M ,21 whereas the outgoing ones appear
\vs5EN,L50,0,1.

TABLE I. Values of the material parameters used for the n
merical calculations. The same valueGm (Gnp

) has been assigned t
all exciton ~vibron! states.

Parameter Value

me /m0 0.12a

mh /m0 0.45a

Eg ~eV! 1.865b

vL (cm21) 213.1b

vT (cm21) 165.2c

bL (103 ms21) 2.969b

bT (103 ms21) 0.002
ea0 ~CdSe! 9.53d

ea` ~CdSe! 5.72e

eb` ~Glass! 4.64f

Gm ~meV! 5
Gnp

(cm21) 2

P2 ~eV! 20g

aReference 30.
bReference 10.
cReference 27.
dReference 31.
eCalculated from the Lydanne-Sachs-Teller relation.
fReference 32.
gReference 33.P252upW cvu2/m0.
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In the next discussion we first analyze the hyper-Ram
process for the case in which all nanocrystallites in
sample have the same radiusR. Typical HRS spectra are
shown in Fig. 3, for different QD radii. The incident photo
energy is such that\vs52\v l2\v1,1 is in resonance with
theN51,L50 excitonic level. We have included in the ca
culation the lowest 11 QD excitonic levels (N51 to 11, for
each valueL50,1). A lifetime broadeningGm55 meV was
assumed for all excitonic transitions. The spectra are bro
ened to have a full width at half maximum~FWHM! 2Gnp

54 cm21. It is systematically found that the main peak
the spectrum corresponds to the creation of thel p51,np51
vibron, with a small contribution coming from thenp52, 3,
and 4 vibrons. This is related to the fact that the mat
elementHm2˜m3

(e,h) drops off rapidly asnp increases. It must be

noted that in the spectra 3~a! and 3~b! the np53 peak is
stronger than thenp52,4 ones, while the largest contributio
in spectrum 3~c! ~aside from the main line! is due to thenp
54 peak. This difference can be explained in terms of
electrostatic effects discussed above: If one looks back to
vibron frequencies as a function of the QD radius in F
1~b!, it can be realized that forR516 Å and 18 Å the vibron
frequencyv3,1 is around the Fro¨hlich frequencyvF , and
thus the exciton-vibron interaction is dominant for the
modes in the corresponding spectra 3~a! and 3~b!. For R
521 Å , on the other hand,v4,1 is approximately equal to

FIG. 1. ~a! Energy levels ofN51, . . . ,7 andL50 ~solid lines!
andL51 ~dashed lines! excitons in a spherical CdSe nanocryst
lite as a function of its radius. Dashed line I indicates the tw
photon energy 2\v l52.771 eV and solid line II corresponds to th
scattered photon energy\vs52\v l2\v1,152.745 eV. The solid
~dashed! arrows indicate the radii of the corresponding outgoi
~incoming! resonances. Line III represents a Gaussian distribu

over QD radii centered atR̄518 Å and with FWHM equal to 40%
~see text!. ~b! Frequency of thel p51 optical vibrons of a CdSe
nanocrystallite as a function of its radius.
n
e

d-

x

e
he
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FIG. 2. Plot of the electrostatic potentials associated to the
optical vibrons for different crystallite radii. Solid line,np51;
dashed line,np52; dotted line,np53; dot-dashed line,np54. The
equationvnp,1(R)5vF with np52, 3, and 4 is fulfilled forR
511.5 Å, R516.2 Å, andR521 Å, respectively. We see that th
electrostatic potentialFnp,1 increases at the interface whenev
vnp,1 coincides with the Fro¨hlich frequencyvF .

FIG. 3. Hyper-Raman spectra of CdSe nanocrystallites emb
ded in glass for different radii and two-photon energies:~a! R
516 Å and 2\v l52.975 eV.~b! R518 Å and 2\v l52.771 eV.
~c! R521 Å and 2\v l52.555 eV.
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vF and, therefore, its potential gives an enhanced contr
tion to the exciton-vibron interaction~see also Fig. 2!, which
is reflected in the spectrum 3~c!.

The HR resonance profile~scattering efficiency vs 2\v l)
for thenp51,l p51 vibron peak is displayed as a solid line
Fig. 4 for QD radiusR518 Å. An important feature of Fig
4 is that the O1 (L50) resonance takes place at lower e
ergy than the I1 (L51) resonance, which is a natural co
sequence from the spacing between excitonic levels b
much larger than the vibron frequencies. It is worth pointi
out that the opposite situation is usually encountered in b
semiconductors.23 We have also calculated the HRS intens
taking the Coulomb interaction equal to zero, recovering
free electron-hole model12 ~dashed line!, and treating the
Coulomb interaction just in first-order perturbation theo
~dotted line!. It is apparent the exciton redshift when th
electron-hole interaction is included. Also, when compar
the absolute values of the scattering intensities for the dif
ent approaches we see that the full calculation is extrem
well approximated by the perturbative approach and gi
only slightly larger values than the free electron-hole mo
~mainly due to the enhanced oscillator strengths ofL50
excitons!. Pertaining to the HR cross section the fr
electron-hole model presents identical line shape to th
displayed in Fig. 3, whenever 2\v l is rescaled to set the
equivalent resonance conditions. Thus, we conclude tha
excitonic effects on the HR resonance profile~and also on
the HR spectrum! of quantum dots in the strong confineme
regime stand mostly to renormalize the resonance energ

Let us finally discuss the effects of the size dispersion
the crystallites on the HRS spectrum. We have considere
ensemble of QD’s described by a Gaussian distribution fu
tion F(R) centered at the mean radiusR̄ and with FWHM
equal to 40%. For a given incoming photon energy\v l , the
conditions 2\v l5Em2

and \vs5Em3
determine a set o

resonance radii$Rr% and their corresponding resonant ex
ton levels $Er% with lifetime broadening$G r%. These are

FIG. 4. Hyper-Raman intensity calculated for CdSe nanocrys
lites with radiusR518 Å. The resonances are denoted by the lab
IN or ON, where I~O! means incoming~outgoing! resonance with
the exciton levelN. Three approaches have been used: Solid li
full matrix diagonalization including exciton effects. Dotted lin
first-order perturbation theory for the energy. Dashed line: f
electron-hole model.
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marked by arrows in Fig. 1~a!, at 2\v l52.771 eV. AsR
departs fromRr , the resonance condition ceases to hold r
idly. The rangedRr around the resonance radiusRr , which
contributes to the integral in Eq.~26!, is typically of the
order of some tens of angstroms. In such a small interval,
matrix elements and the vibron frequencies in Eq.~24! can
be considered as constants. On these grounds we have
ployed the following approximation:

E d2s~R!

dVsdvs
F~R!dR˜(

r

d2s~Rr !

dVsdvs
F~Rr !dRr . ~27!

An estimation for dRr can be obtained fromdRr
5pG r /(dEr /dRuRr

). Note that as the HR spectrum eval

ated at the resonance radiusRr is proportional toG r
22 and

dRr is proportional to G r , the contribution of the
Rr-resonant QD’s to the average HR spectrum is prop
tional to 1/G r .

In Fig. 5 we show the averaged HR spectrum of the
semble of CdSe spherical nanocrystallites with a mean ra
of 21 Å, obtained when 2\v l52.771 eV. This two-photon
energy determines a set of incoming and outgoing re
nances with different exciton levels for QD’s with differen
radii Rr , which are listed in Table II~for the emission of the
np51,l p51 vibron!. The contributions of the variousRr are
also shown in Fig. 5. The resonances due to other exc
levels either are too weak or are attenuated by the size
tribution function. Two important features of the HR spe
trum deserve special attention. The first one is the main p
at about 208 cm21, which is originated by the emission o
the np51,l p51 vibrons in QD’s with different resonanc
radii. The most important contribution is that of the outgoi
resonance O3, which takes place forR528.0 Å. This reso-

l-
ls

:

e

FIG. 5. Hyper-Raman spectrum for 2\v l52.771 eV of an en-
semble of CdSe QD’s with mean radius 21 Å and a 40% s
dispersion. The contributions of the QD’s with different resonan
radii are also shown.

TABLE II. List of resonance radii and corresponding resona
exciton levels~see text and Fig. 5!. The incoming~outgoing! reso-
nances are labeled by IN ~ON!.

R ~Å! 18.0 20.3 26.0 27.8 28.0 30.0
(N,L) ~1,0! ~1,1! ~2,1! ~3,1! ~3,0! ~4,1!
- O1 I1 I2 I3 O3 I4
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5520 PRB 60E. MENÉNDEZ-PROUPINet al.
nance appears so strongly because a double resonance
dition connecting the levelsN53,L50, andN53; L51 is
almost fulfilled@see Fig. 1~a!#. In addition, the resonanceI3,
associated to dots of radiusR527.8 Å, is very close in en-
ergy to O3. The second important feature is the broad st
ture between 180 and 190 cm21. This structure is caused b
the emission of interfacelike vibrons from all resonant QD
Its irregular shape is a direct consequence of the vibron
quency dispersion as a function of QD radius.

Figure 6 shows the variation of the HR line shape w
small variations of the incoming photon energy for an e
semble of QD’s with a mean radius of 18 Å. When 2\v l
52.771 meV increases~decreases! by 100 meV, the radii of
resonance get smaller~larger! by about 1 Å@see Fig. 1~a!#.
Hence, the principal peak of the spectrum is shifted to l
~high! frequencies, as can be seen in the four lower curve
the figure. Nevertheless, an opposite effect appears in
upper spectrum~change from 2\v l52.771 eV to 2\v l
52.971 eV). In this special situation the higher-resona
radii get closer to the mean radiusR̄518 Å and become
dominant in the spectrum. This effect is equivalent to
increase of the mean radius. It is important to note that
FWHM of the spectrum gradually increases as a result of
competition between the large contributions of the resona
radii.

Finally, the dependence of the HR line shape on the m
radius for 2\v l52.771 eV is shown in Fig. 7. The mai
features can be explained with similar arguments as in
previous figures. ForR̄515 and 16 Å the line shapes a
practically identical due to the resonance O1 in the dots

FIG. 6. Hyper-Raman spectra for an ensemble of QD’s wit
mean radius of 18 Å and a 40% size dispersion for different val
of the laser energy. The inset illustrates the dependence of the m
mum position and FWHM on the two-photon energy 2\v l . The
lines are a guide to the eyes.
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radius R518 Å. For R̄518 Å the maximum is slightly
shifted to high frequencies reflecting the influence of oth
resonances associated with larger radii. ForR̄520 Å the
main peak is not Lorentzian, showing the contribution
several equally strong resonances. And forR̄>21 Å the
resonance O3 becomes dominant.

The above-presented model might also be applicable
CdS QD’s. Nevertheless, the available data reported for
type of QD’s19 are not complete enough to stress the H
showing the vibron confinement effects. In particular, t
experiments of Ref. 19 were realized at room temperat
displaying the HR intensity in a wide spectral range with lo
spectral resolution (;25 cm21). Under these conditions th
exciton and vibron confinement effects are not so well o
served. We could have performed the calculation anyw
and discussed the same effects on fine structure. Howe
the obtained results for this case would not be so reliable
to uncertainties in the CdS parameters, e.g., hole effec
masses and phonon dispersion. Moreover, the interpreta
given to the HRS data in Ref. 19 is sufficient and not t
much can be argued.

V. CONCLUSIONS

We have performed a theoretical study of the normaliz
hyper-Raman scattering efficiency in spherical semicond
tor quantum dots, considering confined Wannier-Mott ex
tons as the intermediate states. The exciton-lattice interac
is assumed to occur via Fro¨hlich-type coupling. It has been
shown that hyper-Raman spectroscopy can be used to p
the l p51 vibrational modes. In addition, each particul
mode (mp50,61) can be selected by properly choosing t
polarization of the incident light. With linearly polarized in

a
s
xi-

FIG. 7. Dependence of the HR line shape with the mean rad

R̄ at 2\v l52.771 eV. The size dispersion is 40% of the me
radius in all the spectra.
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cident light, onlymp50 vibrons contribute to the scatterin
whereas by employing circularly polarized light themp5
61 modes are active. The details of the calculations of
polar optical vibrational modes in CdSe QD’s have be
discussed and the eigenfrequencies and electrostatic p
tials of thel p51 modes have been presented as a functio
the nanocrystallite radius. It has been demonstrated
when their frequencies are close to the Fro¨hlich frequency,
they undergo an increase in their electrostatic surface c
acter.

The calculations of the hyper-Raman spectra show
the most prominent peak is due to the emission ofnp51,l p
51 vibrons. The other contributions are due to the interfa
like l p51 vibrons. The presence of surface electronic ex
tations could increase their role in hyper-Raman scatteri

The effect of the electron-hole Coulomb interaction h
been found to be of limited importance for the hyper-Ram
scattering in the strong confinement limit relevant to t
QD’s analyzed here. The absolute values of the HRS in
sity are slightly enhanced by the Coulomb interaction
compared to the free electron-hole model values. The m
excitonic effect seems to be the renormalization of the re
nance energies.

The size dispersion of the nanocrystallites is shown
give rise to a complex behavior of the main peak position
the HR spectrum as a function of the laser energy and
details of the distribution over radii. An additional effect
the distribution of the signal due to interfacelike vibrons ov
a broad band of frequencies from 180 to 190 cm21.
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APPENDIX: REDUCTION OF THE MATRIX ELEMENTS

In this appendix we show in detail how to calculate mat
elements of the form

^ne8 ,nh8 ,l e8 ,l h8 ,L8,M 8uTkqune ,nh ,l e ,l h ,L,M &, ~A1!

where Tkq is the qth component of akth-order spherical
tensor~single-particle! operatorTk , une ,nh ,l e ,l h ,L,M & rep-
resent an electron-hole pair state, and (L,M ) are the corre-
sponding total angular momentum quantum numbers.

First of all, we factorize the dependence onM 8, M, andq
by applying the Wigner-Eckart theorem:

^ne8 ,nh8 ,l e8 ,l h8 ,L8,M 8uTkqune ,nh ,l e ,l h ,L,M &

5~21!L82M8S L8 k L

2M 8 q MDA2L811

3^ne8 ,nh8 ,l e8 ,l h8 ,L8iTkine ,nh ,l e ,l h ,L&. ~A2!

The factor^ . . . ,L8iTki . . . ,L& does not depend onq and is
called thereduced matrix element. It can be further simpli-
e
n
en-
of
at

r-

at
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.
s
n

n-
s
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fied by taking into account thatTkq is a single-particle op-
erator. Let us suppose, without loss of generality, that t
operator only acts on the electron coordinates. Then the
lowing reduction formula can be applied:34

^ne8 ,nh8 ,l e8 ,l h8 ,L8iTk
(e)ine ,nh ,l e ,l h ,L&

5dn
h8 ,nh

d l
h8 l h

~21!k1 l h1L1 l e8H L8 L k

l e l e8 l h
J

3A~2L11!~2l e811!^ne8 ,l e8iTk
(e)ine ,l e&.

~A3!

Finally, by inserting Eq.~A3! into Eq. ~A2! we achieve the
complete simplification of the matrix element~A1!.

Let us illustrate this procedure taking as example the m
trix element of the operatoreW•rWe . As a previous step we
must realize that the operatoreW•rWe can be expressed in term
of spherical irreducible tensors,

eW•rWe5 (
q521

1

aqT1q
(e) , T1q

(e)5A4p

3
r eY1,q~Ve!, ~A4!

with the definitions

a05ez , a615
iey7ex

A2
. ~A5!

Now, by applying Eqs.~A2! and ~A3! we obtain

^ne8 ,nh8 ,l e8 ,l h8 ,L2 ,M2ueW•rWeune ,nh ,l e ,l h ,L1 ,M1&

5dn
h8 ,nh

d l
h8 ,l h

aM22M1
~21!11 l h81L11L22M2

3S L2 1 L1

2M2 M22M1 M1
D H L2 L1 1

l e l e8 l h
J

3S l e8 1 l e

0 0 0
D

3A~2L211!~2L111!~2l e811!~2l e11!

3S E Rn
e8 ,l

e8
~r !Rne ,l e

~r !r 3dr D . ~A6!

Proceeding in a similar way it can be shown that an expr
sion analogous to Eq.~A6! ~with subscriptse and h ex-
changed everywhere! holds for the matrix element of the
hole operatoreW•rWh . To obtain the last expression we hav
used the following reduced matrix elements:

^n8,l 8iT1in,l &5A4p

3 S E Rn8,l 8~r !Rn,l~r !r 3dr D
3^ l 8iY1i l &, ~A7!

^ l 8iYki l &5~21! l 8A~2l 11!~2k11!

4p S l 8 k l

0 0 0D .

~A8!
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Moreover, if we particularize Eq.~A6! to the caseL1
5M150 (l e5 l h) and evaluate the 3j and 6j symbols we
get the result shown in Eq.~13!.

Applying the same method the following expression
obtained for the matrix elements of the electron-lattice int
action:

^ne9nh9l e9l h9L3M3ueŵF~rWe!une8nh8l e8l h8L2M2&

5dn
h8 ,n

h9
d l

h8 ,l
h9
~21!L21L31 l h82M2 (

np ,l p ,mp

~21! l p
CF

AR

3A~2L211!~2L311!
i-

,

0

y,

.

. B

r-

. B

ev

ys
-

3A~2l e811!~2l e911!~2l p11!/4p

3S L2 l p L3

2M2 mp M3
D S l e8 l p l e9

0 0 0
D

3H L2 L3 l p

l e9 l e8 l h8
J F

n
e9 ,l

e9˜n
e8 ,l

e8

np ,l p . ~A9!

In this expression it is implicit that only the creation part
ŵF is acting on the ket. ReplacingL251,L35M350, the

Eq. ~A8! is reduced to Eq.~19! andF
n

e9 ,l
e9˜n

e8 ,l
e8

np ,l p is defined in

Eq. ~20!.
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