
PHYSICAL REVIEW B 15 OCTOBER 2000-IIVOLUME 62, NUMBER 16
Multiphonon resonant Raman scattering in nanocrystals
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We have studied the multiphonon resonant Raman scattering from confined and interface polar optical
phonons in spherical nanocrystallites. The intermediate virtual states in the scattering process are taken into
account as Wannier-Mott confined excitons in a spherical dot. Fro¨hlich interaction between excitons and
optical phonons has been considered and general selection rules for the exciton-phonon matrix elements and
multiphonon scattering processes in the case of spherical quantum dots have been derived. It is shown that for
a second-order process, two phonons are created with the same angular momentum (l p1

5 l p2
) while, in a

third-order process, the second emitted~or absorbed! phonon with angular momentuml p2
must fulfill the

triangular propertyu l p1
2 l p3

u< l p2
< l p1

1 l p3
. In the general case, the sum of phonon momentum projections on

the z axis mp1
1mp2

1¯50. We have performed multiphonon Raman cross-section calculations of CdSe
quantum dots of various sizes up to third order and present detailed comparison with available experimental
data. The effect of size distribution is studied; we show that a broad dispersion of nanocrystal sizes has
important consequences on the multiphonon Raman spectra. The experimental relative intensities between
phonon overtones are correctly described in the framework of the present model. Also, an analysis of the
applicability of the Huang-Rhys factor for quantum dot systems is presented and several contradictions found
in the literature concerning this parameter have been explored.
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I. INTRODUCTION

During the last two decades semiconductor nanocrys
have been thoroughly investigated with regards to th
promising applications in technology of optical devices1 and,
recently, as biological probes in combination with organ
molecules.2 Their applicability and diversity comes from
their singular optical properties, which depend strongly
size and geometrical factors. On the other hand, the poss
ity of making very small crystallites at relatively low co
makes them useful systems for the investigation of quan
confinement effects on the elementary excitations of se
conductors. Their main drawback as a research object is
broad size distribution in a real sample, which obscures
properties of individual nanocrystals. Nevertheless, imp
tant progress has been made in several directions:~1! Devel-
opment of techniques that yield nanocrystals with we
defined and controllable size distributions;3–6 ~2!
Implementation of microluminescence and micro-Ram
measurements that allow the observation of individual
only a few quantum dots,7,8 ~3! Use of size selective spec
troscopic techniques as holeburning9 and Raman scattering.10

Several works in the late 80’s and early 90’s focused on
electron-phonon coupling strength in CdSe quant
dots,11–15 giving some contradictory results. In particular,
Ref. 14 it is shown that the coupling strength betwe
phonons16 and intrinsic confined excitons is much small
than that obtained from multiphonon Raman experiments
terpreted in terms of the Franck-Condon theory. The sa
result is obtained in PbS nanocrystals.17 To avoid this prob-
lem, and to achieve better agreement between theory
experiments, other interactions have been incorporated in
theory.14,15,18 Multiphonon resonant Raman scatterin
~MRRS! provides a useful tool to investigate the Fro¨hlich-
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type exciton-lattice interaction in quantum dot~QD! nano-
structures. First-order Raman and hyper-Raman scatte
only provide information about spherical~phonon angular
momentum l p50) and nonspherical symmetry (l p51)
modes, respectively, while the MRRS gives rise to the c
fined and interface optical modes withl p.1. These are con-
firmed by Raman spectroscopy of CdSe,~Refs. 12 and 13!
PbS ~Ref. 17! and CdS~Ref. 19! nanocrystals. In the pas
high-order Raman spectra have been extensively studie
bulk Group-II–VI semiconductors~see Ref. 20! as well as in
quantum well systems~see Ref. 21!. It has become clear tha
a combined scattering mechanism for MRRS involving
excitonic states leads to a strong increase of the scatte
efficiency, in particular to strong outgoing resonances.
MRRS process is strongly dependent on the exciton-pho
coupling, and should be a useful tool to investigate the o
cal lattice vibrations and their interaction with the electron
states of nanocrystals. The strength of the exciton-pho
interaction is manifested by a set of overtones at integer m
tiples of the LO phonon frequency. The observed multiph
non spectra of semiconductor microcrystallites are rat
similar to those obtained in bulk semiconductors, althou
the relative intensities of MRRS overtones are very sensi
to the radii of the QD’s.13,19

In this paper we present a theoretical model that allows
to study multiphonon Raman scattering by optical polar
brational modes and compare the theoretical predictions w
available Raman spectra of CdSe QD’s. Since the Fro¨hlich
interaction becomes the strongest coupling mechanism in
lar semiconductor microcrystallites for incoming light ph
ton energy in resonance with excitonic states, only t
exciton-phonon coupling will be considered here. Throug
detailed calculation of the matrix elements and the selec
rules involved in the scattering process, we provide a qu
11 006 ©2000 The American Physical Society
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titative analysis of MRRS in spherical nanocrystals. W
present microscopic calculations of the resonant Ram
cross sections, which take into account the relevant diagr
of the high-order scattering processes and investigate
relative overtone intensities, their dependence on dot rad
and the resonance profile for CdSe quantum dots embe
in a glass matrix.

II. THEORY

A. General formalism

The MRRS process consists of the following steps:
exciting photon of frequencyv l creates an electron-hole pa
~exciton!, this exciton is scattered through generation ok
optical phonons and, finally, it recombines with the emiss
of a photon of frequencyvs5v l2kvLO . For the zero-
dimensional case and akth-order process the observedkvLO
line is due to a combination ofk vibrational excitations of
frequencyvpj

( j 51,2, . . .k). Typical diagrams contributing
to the second- and third-order scattering amplitudes in a
are shown in Fig. 1.

The MRRS cross section22 of a quantum dot can be writ
ten as:

d2s

dVdvs
5

V2vs
3h lhs

3

4p2c4v lNl\

3(
F

uWFI~vs ,es ;v l ,el !u2d~EF2EI !, ~1!

wherec is the velocity of light in vacuum,V a normalization
volume h l(hs), and el(es) are the refractive index and th
unit polarization vector of the incident~scattered! light, re-
spectively.WFI is the scattering amplitude for the transitio
from the initial stateuI (v l ,el)& to the final stateuF(vs ,es)&.
Under the conditions found in Raman experiments w
semiconductor quantum dots, assumingT50 K, and in the
framework of the adiabatic approximation, the initial sta
uI & is given byuNl ,0s& ^ u0p1

,0p2
, . . . & ^ uG&, while the final

stateuF& is equal touNl21,1s& ^ unp1
,np2

, . . . & ^ uG&. Here,

u0& anduG& represent the ground state of the vibrational a
electronic fields, respectively. On the other hand,Nj ( j
5 l ,s) and np are the occupation numbers of photonsu j &
e

n
s

he
s,
ed

e

n

D

d

5uej ,k j& with polarization vectorej and wave vectork j , and
of optical vibrational modesup& with frequencyvp , respec-
tively. Energy conservation imposes the restriction

EI2EF5\v l2\vs2(
j 51

k

\vpj
. ~2!

The corresponding scattering amplitude can be obtai
from time-dependent perturbation theory, considering the
teraction Hamiltonian as a sum of the exciton-radiati
(ĤE2R) and exciton-lattice (ĤE2L) operators. Under reso
nance conditions, the leading term in the scattering am
tude is23

FIG. 1. Topologically nonequivalent resonance diagrams c
tributing to the scattering amplitude in the case of:~a! Second-order
Raman scattering processes and~b! Third-order processes. The vir
tual intermediate excitonic states are labeled bym and the vibra-
tional excitation frequencies byvp . Empty circles represent the
exciton-radiation interaction, the filled circles the exciton-lattice
teraction in the QD. The sum of these diagrams for the particu
case when in the final state identical LO vibrons participate can
carried out following Eq.~5!.
WFI
(k)5 (

V1 , . . .Vk11

^FuĤE2RuVk11&F)
j 51

k

^Vj 11uĤE2LuVj&G ^V1uĤE2RuI &

F)
j 50

k

~EI2EVj 11
!G .
the

lent
er
sual
The virtual intermediate states of the radiation1vibration
1electron fields are described by the ketuVj&5uNl21,0s&
^ unp1

, . . . ,npj
21,0, . . .& ^ um j& and an energyEVj

5(Nl

21)\v l1(n51
j \vpn

1Em j
, where the excitonic states ar

given by um& and energyEm . The sum overVj states takes
into account all possible diagrams obtained by permuting
phonon interaction vertices. For a givenkth order process the
sum is confined to the appropriate number of nonequiva
Feynman diagrams~see Fig. 1 for a second- and third-ord
processes!. The above expression can be reduced to the u
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notation with solely matrix elements between the statesm j of
the electronic subsystem if the matrix elemen

^Vj 11uĤE2LuVj& are rewritten as

^Vj 11uĤE2LuVj&5^m j 11uHE2L
(pj ) um j&^npj

ubpj

† unpj
21&

5Anpj
^m j 11uHE2L

(pj ) um j&. ~3!
l-
ti
-

di
on

i

v
s

,

s
th

r
-

HE2L
(pj ) is associated to the phonon creation operatorbpj

† with

quantum numberspj and the excitonic transitionum j&
→um j 11&. For the final vibrational stateunp1

,np2
, . . .npr

&
with the conditionnp1

1np2
1 . . . 1npr

5k, we have

WFI
(k)5~np1

!np2
! . . . npr

! !1/2~Nl !
1/2(

Pe

P̂eMFI~p1 , . . . ,pk!,
MFI~p1 , . . . ,pk!5 (
m1 , . . .mk11

^GuHE2R
1 umk11&F)

j 51

k

^m j 11uHE2L
(pj ) um j&G ^m1uHE2R

2 uG&

F)
j 51

k S \v l2Em j 11
2 (

n51

j

\vpn
1 iGm j 11

ex D G ~\v l2Em1
1 iGm1

ex !

. ~4!
c-
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Here, HE2R
1 (HE2R

2 ) denotes the exciton-radiation Hami
tonian interaction operator associated to the photon crea
~annihilation!. P̂e is the operator of permutations of the in
dices p1 , . . . ,pk and the sum with indexPe runs over all
nonequivalent permutations. In the sense of Feynman
grams it corresponds to the sum over topologically n
equivalent diagrams. The factor (np1

!np2
! . . . npr

!) 1/2 arises
when in the final state at least one vibrational excitation
excited several times. The product of all factorsAnpj

is

equal to (np1
!np2

! . . . npr
!) 1/2.

The sum over the final states is essentially a sum o
multiphonon states. In an operational sense, one need
sum over the nonequivalent sets$p1 ,p2 , . . . ,pk%, where the
order of the vibrational excitation labelsp’s is irrelevant. To
express the sum in terms of thep’s without repeating terms
we replace the sum in Eq.~4! by

(
F5$p1 ,p2 , . . . ,pk%

uWFI
(k)u2d~EF2EI !

5Nl (
p1<p2< . . . <pk

~np1
!np2

! . . . npr
! !21

3U(
Pe8

P̂e8MFI~p1 , . . . ,pk!U2

d~EF2EI !,

where nowPe8 are all the permutations between the labelp
’s, including exchange of equal labels. The change from
sum over nonequivalent permutationsPe to the sum over all
permutations Pe8 is effected by means of a facto
(np1

!np2
! . . . npr

!) 21, obtained from elemental combinato

rial analysis. We can replace the orderedp’s sum by the
whole sum using

(
F5$p1 ,p2 , . . . ,pk%

uWFI
(k)u2d~EF2EI !

5
Nl

k! (
p1 ,p2 , . . . ,pk

U(
Pe8

P̂e8MFI~p1 , . . . ,pk!U2

d~EF2EI !.

~5!
on

a-
-

s

er
to

e

Equation~5!, although computationally expensive, is stru
turally simpler as we do not need to watch out for identic
phonons.

By examining Eq.~4! it is found that the relevant reso
nances for akth-order process will occur at\v l5Em1

~in-

coming resonance!, \v l5Emk11
1(n51

k \vpn
~outgoing

resonance!, and a series of intermediate resonances at\v l

5Em j 11
1(n51

j \vpn
, where eachpn can occur severa

times.

B. Selection rules for spherical nanocrystals

In the following we consider quantum dots with spheric
shape and radiusR. The electronic subsystems are taken
be Wannier-Mott excitons confined in the QD and treated
the framework of the effective-mass approximation. The
citonic statesum& are labeled by the quantum numbe
N,L,M , and P, corresponding to the energy, the square
the orbital angular momentum, its projection over a quan
zation axis, and the parity, respectively. Notice thatN, L, M,
and P are related only to the envelope of the exciton wa
function, not to its Bloch part. The eigenstatesuN,L,M ,P& of
the effective-mass equation are expanded in terms
electron-hole statesua,L,M ,&

uN,L,M ,P&5(
a

CN,L,M ,P~a!ua,L,M &, ~6!

wherea denotes the set of quantum numbers of the unc
related electron-hole states. The eigenstatesum& and the ex-
citonic energiesEm are obtained by numerical diagonaliz
tion of the Wannier-Mott Hamiltonian. The details of th
approach are given elsewhere.24,25

In polar semiconductors the Fro¨hlich mechanism is al-
lowed for MRRS, playing the dominant role in the scatteri
efficiency. In the following we shall only deal with the Fro¨h-
lich interaction induced Raman scattering. The vibratio
optical modes will be treated within the formalism of Ref
25 and 26, where a phenomenological continuous mode
developed to describe the vibrational states of a QD. T
polar optical vibrations are described with the help of a v
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tor field u coupled to a scalar fieldf, which represent the
cation-anion relative displacement and the concomitant lo
range electrostatic potential, respectively. The norm
modes, of frequencyvp , are labeled by the setp
5(np ,l p ,mp), with l p andmp representing angular momen
tum and its projection, respectively. The exciton-LO phonon
interaction HamiltonianĤE2L5e@wF(re)2wF(rh)#, where
re(rh) are the electron~hole! coordinates andwF is equal to

ewF~r !5
CF

AR
(

n,l ,m
A vL

vn.l
Fn,l~r !Yl ,m~V!bn,l ,m1H.c.,

~7!

CF is the Fröhlich constant,Yl ,m (2 l<m< l ) the spherical
harmonics, andFn,l(r ) the radial part of the potential. De
tails of these calculations are given elsewhere.26,27

Due to the spherical symmetry, several selection ru
arise associated with angular momentum conservation.
matrix element ^muHE2R

2 uG&5^GuHE2R
1 um&* for direct-

allowed transitions betweenc andv bands is given by
e
on
f

e
e

ta

n-
g-
l

s
he

^muHE2R
1 uG&5

e

m0
A2p\

vh2

e"pcv

AV
dL,0dM ,0dP,1

3(
n,l

~21! lA2l 11CN,0,0,1~n ,n ,l ,l !.

~8!

In the above equation the radial part of the single-parti
states was assumed to be that of the spherical dot with
infinite barrier.24 The excitonsm1 andmk11, which mediate
the interaction with the radiation field in Eq.~4!, have zero
angular momentum (L15Lk1150) and even parity (P1
5Pk1151).

The calculation of the interaction matrix elemen
^m i uHE2L

(p) um j& for excitons and phonons with arbitraryL and
l p angular momenta, involve a sum of Clebsch-Gordan co
ficients over the electron and hole magnetic quantum nu
bers (mei

,mhi
,mej

,mhj
). This sum can be performed with th

help of the diagrammatic technique of Brink and Satcher28 or
alternatively, with the help of the Wigner-Eckart theore
For a discussion of these calculations see the Appendix
Ref. 25. The obtained matrix elements have the follow
explicit expression:
^m i uHE2L
(p) um j&5

CF

A4pR
A~2Li11!~2L j11!~2l p11!~21!2M j S Li l p L j

2Mi 2mp M j
D (

a i ,a j

Cm i
* ~a i !Cm j

~a j !

3F ~21! l ejdnei
,nej

d l ei
,l ej

A~2l hi
11!~2l hj

11! S l hi
l p l hj

0 0 0
D H Li L j l p

l hj
l hi

l ej
J ^nhi

,l hi
uFnp ,l p

unhj
,l hj

&

2~21! l hj
1Li1L j 1 l pdnhi

,nhj
d l hi

,l hj
A~2l ei

11!~2l ej
11!

3S l ei
l p l ej

0 0 0
D H Li L j l p

l ej
l ei

l hj
J ^nei

,l ei
uFnp ,l p

unej
,l ej

&G . ~9!
D

tion

the

ix

or
a-
. 25
to

ith
Equation~9! contains implicitly the selection rules for th
matrix elements of the exciton-phonon interacti
^m j 11uHE2L

(pj ) um j&. From the properties of the 3-j symbol o
the top line of Eq.~9! we derive

uL j2L j 11u< l pj
<L j1L j 11 , ~10!

M j 115M j2mpj
, ~11!

for j 51, . . . ,k. The parity selection rule follows from th
properties of the 3-j symbols inside the parentheses. For
ample, the first term

S l hi
l p l hj

0 0 0
D

tells thatl hi
1 l p1 l hj

must be even while the Kronecker del

determines thatl ei
5 l ej

, therefore (21)l ei
1 l hi3(21)l ej

1 l hj

5(21)l p. Hence, the parity selection rule for the excito
phonon interaction is:
x-

Pj Pj 115~21! l pj j 51, . . . ,k.

A general selection rule for the emitted phonons in the Q
reads

(
j 51

k

mpj
50. ~12!

Combining the above equations and the dipolar selec
rulesL15Lk1150, P15Pk1151, allows us to find the con-
straints for the phonons and excitons taking part in
MRRS processes~see Table 1!.

Figure 2 displays the dimensionless matr
elements ^L5 l p, N51uhE2L

(pj ) uN51, L50&5^L5 l p, N51

3uHE2L
(pj ) A4pR/CFuN51, L50& of the exciton-phonon in-

teraction Hamiltonian as a function of the QD radius f
severall p ,np vibrational modes. For the numerical calcul
tions the parameters of CdSe dots in a glass matrix of Ref
were used. In Fig. 2 we see that the principal contribution
theN51 matrix element comes from the phonon states w



irtual

11 010 PRB 62R. RODRÍGUEZ-SUÁREZ et al.
TABLE I. Phonon selection rules for a MRRS process in a spherical quantum dot. The allowed v
exciton transitions are also indicated.

Order Phonon Exciton

First l p15mp150 uN1,L150,M150,P151&→
uN2 ,L250,M250,P251&

Second l p1
5 l p2

5 l p

mp1
52mp2

52mp

uN1,L150,M150,P151&→
uN2 ,L25 l p ,M25mp ,P25~21! l p&→

uN3 ,L350,M350,P351&

Third u l p1
2 l p3

u< l p2
< l p1

1 l p3

l p1
1 l p2

1 l p3
5even

mp1
1mp2

1mp3
50

uN1,L150,M150,P151&→
uN2 ,L25 l p1

,M252mp1
,P25~21! l p1&→

uN3 ,L35 l p3
,M35mp3

,P35~21! l p3&→
uN4 ,L450,M450,P451&
e

y

th
t
ix
om

tr
om
m
c
ag

a

ap-

an
laser
x-

Se
ion

s,
e

esti-

f

lder
-

l p51,2,3, andnp51 and, throughout the radius range und
consideration, the largest contribution corresponds to thenp
51,l p51 mode. The maximum observed fornp53 at cer-
tain radii is identified as related to the so-called Fro¨hlich
mode (l p51) and tosurface modes( l p52 and 3).26 At radii
where the mode frequenciesv l p ,np

are closer to the Fro¨hlich

frequencyvF (1.5<R<2.0 nm) or to the surface frequenc
v l ~the maxima are atR;1.7 nm for np52,l p52, R
;2.1 nm for np53,l p52, and R;2.5 nm for np53,l p
53) the electrostatic potential will increase, increasing
absolute value of the exciton-phonon matrix elements. I
precisely in this range that these modes present a m
interface-confined character. Other conclusions follow fr
Fig. 2: ~a! the matrix element̂ m j 11uHE2L

(pj ) um j& drops off
rapidly for np.1, ~b! the contributions of thel p50 modes
to the MRRS (k>2) cross section are very small, and~c! the
dominant role is played by thel p51 phonons.

III. RAMAN CROSS SECTION

Nanocrystals embedded in a glass or an organic ma
present a distribution in size and shape. For a specific inc
ing photon energy we need to calculate the average Ra
cross section of the dots that fulfill any of the resonan
conditions. The corresponding expression for the aver
Raman cross section is10,25

SD5E d2s~R!

dVdvs
F~R!dR5(

r

d2s~Rr !

dVdvs
F~Rr !

pG r

dEr /dRr
,

~13!

where a Gaussian size distribution functionF(R) with mean
radiusRm and full width at half maximum~FWHM! s, is
assumed.$Er% is the set of resonant exciton levels for
radiusR5Rr .

A. Second-order process

The selection rules obtained in Sec. II, Eq.~5! for a
second-order process can be reduced to
r

e
is
ed

ix
-

an
e
e

(
F

uWFI
(2)u2d~EF2EI !

5
1

2Nl
(

np1
,np2

,l p

~2l p11!uMFI~p1 ,p2!

1MFI~p2 ,p1!u2
G2 /p

~v l2vs2v l p ,np1
2v l p ,np2

!21G2
2

,

~14!

where a Lorentzian function replaces the delta function
pearing in Eq.~5! and G25Gp1

1Gp2
is the total phonon

linewidth taking place in the process.
Figure 3~a! displays the average second-order Ram

cross section of an ensemble of CdSe nanocrystals for a
photon energy\v l52.5716 eV. The squares represent e
perimental data taken from a commercial filter of Cd
nanocrystallites with a Gaussian size distribution funct
with average radiusRm51.9 nm @for Rm54.0 nm see Fig.
3~b!# and as50.1Rm FWHM. For the exciton linewidth we
choseG0

ex55 meV ~see Ref. 1! andG1
ex515 meV @G1

ex58
meV in Fig. 3~b!# for the ground and excited state
respectively.29 Rm was estimated from the maximum of th
absorption coefficient with the formula E(Rm)
5\2p2/2m̄Rm

2 ~wherem̄ is the reduced exciton mass! for the
electron-hole pair confinement energy.13 The line represents
our theoretical calculation for which Gp1

5Gp2

511 cm21(Gp1
5Gp2

56 cm21 for Rm54.0 nm! has been
assumed following the reported experimental data.13 The
bulk energy gap relevant to the nanocrystal has been
mated from theEg gap of CdSe at 4 K~Ref. 10! and the
temperature derivativedEg /dT523.631024 eV/K.30 The
Raman cross section is dominated byl p51 vibrational exci-
tations. The main peak in Fig. 3~a! is due to the creation o
two confined phonons with quantum numberspl5( l p
51,np51,mp) and p25( l p51,np51,2mp), wheremp50,
61 and smaller contributions from states withl p50,2, and
3. The other feature of the measured spectrum is a shou
at ;400 cm21, which is likely to be due to scattering me
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diated by a confined phononv1,1 and a mixed confined
interface phononv1,3. However, the shoulder predicted b
the theory is weaker and is located at a higher frequency
the experimental one. The latter corresponds to the Fro¨hlich
phonon of the dielectric model, which does not strictly app
when mechanical confinement effects are present.26,31 In or-
der to clarify the discussion about the different scatter
contributions we need to look back to Fig. 2 where t
electron-phonon matrix elements relevant to the creation
individual phonons (np ,l p) are displayed. In the second
order scattering, the product of the twoHE2L matrix ele-
ments does not depend onmp , and we only need to analyz
the strength of thenp ,l p scattering channels. In Fig. 2 it i
shown that thel p51, np51 phonons possess the large
matrix elements throughout the radius range under consi
ation. Other states with a significant contribution arel p52
and 3 withnp51. On the other hand, thel p51, np53 ma-
trix element has large values in theR;1.522.0 nm range,
explaining the observed shoulder in Fig. 3~a!. It is precisely
in this range of radii where the model p51, np53 presents
a mixed interface-confined character and its frequencyv1,3 is
close to the Fro¨hlich frequencyvF . The spectrum of Fig.

FIG. 2. Dimensionless matrix elements^L5 l p ,N51uhE2L
l p ,npuN

51,L50& contributing to the MRRS processes as a function of
QD radius for severall p , np vibrational states.~a! l p50 ~solid
lines! and l p51 ~dashed lines!. ~b! l p52 ~solid lines! and l p53
~dashed lines!. The maxima fornp53, l p51, 2, and 3 correspond
to the radii where thev l p ,np

are near ‘‘surface phonon’’ frequencie
v l ( l 51,2, and 3).
an
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3~a! is the result of contributions of nanocrystals in differe
resonance regimes: Incoming resonance forR151.96 nm,
intermediate resonance forR252.0 nm, and outgoing reso
nance for R352.04 nm, all of them with theuN51,L
51,M ,P521& excitonic level. Resonances with higher e
citon states occur for largerR values but are quenched by th
size distribution function used in our calculation.

Figure 3~b! shows the average second-order Raman cr
section of an ensemble of nanocrystals withRm54.0 nm and
s50.1Rm for a laser energy\v l52.184 eV, along with the
experimental data of Ref. 13. Our calculation reprodu
quite well the asymmetric line shape and attributes the sh
der at 399 cm21 to scattering by the combination of the tw
phononsv1,1 and v1,8. The v1,8 corresponds to the mixed
confined-interface mode forR;4 nm. The nanocrystals tha
contribute to the average cross section of Fig. 3~b! have reso-
nance radii equal toR153.93 nm~incoming resonance!, R2
54.08 nm~intermediate resonances!, andR354.26 nm~out-
going resonance!. The weights of the main contributions t
the Raman cross section are illustrated in Figs. 3~a! and 3~b!
by vertical lines. These lines indicate the relative strength
the confined-interface modes.

e
FIG. 3. Second-order Raman cross section of an ensembl

CdSe nanocrystals embedded in glass. Theory: solid line, exp
ment: black squares. The ensemble of dots has a Gaussian
distribution function with 10% FWHM.~a! Spectra at\v l52.572
eV and mean radiusRm51.9 nm. ~b! \v l52.184 eV andRm

54.0 nm. The main contributions and their relative strengths
labelled by arrows and vertical lines, respectively.
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B. Third-order processes

Using Eq.~5! and the obtained selection rules we are a
to evaluate the third-order Raman spectrum by taking i
account all allowedvp1

1vp2
1vp3

combinations contribut-
ing to the cross section. Figure 4 shows the average th
order Raman cross section of CdSe nanocrystals for the s
laser frequency as Fig. 3~b! (\v l52.184 eV!. This spectrum
has been calculated for a Gaussian radius distribution fu
tion with a 4.0-nm mean radius ands50.1Rm . In the cal-
culation, phonon linewidths ofGp1

5Gp2
5Gp3

56 cm21

have been used to fit the experimental data. We found
the main peak is due to the contribution of three phon
with frequencies v l 151,n1511v l 251,n2511v l 352,n351

5635.9 cm21, followed by the combinationv l 150,n151

1v l 251,n2511v l 352,n351 5636.7 cm21. The former has a
strength 2.4 times larger~as illustrated in the figure by ver
tical lines! than the latter. The contributions of other mod
are even smaller, being quenched by the size distribu
function. The squares correspond to experimental data f
Ref. 13. In this case theL51 exciton energy has resonan
radii R53.93, 4.08, 4.26, and 4.45 nm, which correspond
the incoming, two intermediate, and outgoing resonanc
respectively.

C. Overall spectrum

An important test for any theoretical model involves t
description of the overall measured spectrum at a given l
energy and for a specific mean radius of the nanocrys
The measured relative strengths and spectral shapes o
overtones have to be described by the calculated Rama
tensities. Figure 5~a! displays the evolution of the first-
second-, and third-order Raman processes of a single C
nanocrystal 1.9 nm in radius, as function of the laser ene
and Raman shift. The incoming~I! and outgoing~O! reso-
nances are indicated by arrows. The spectrum at\v l
52.575 eV corresponds to incoming resonances for all
vestigated processes. It can be seen that the overtones o
phonons are stronger than the first-order peak, while the c
tribution of three phonons is absent in the scale of the figu

FIG. 4. The same as Fig. 3 for the third-order Raman cr
section at\v l52.184 eV of an ensemble of nanocrystals withRm

54.0 nm and 10% FWHM dispersion radius.
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At \v l52.600 eV the spectra shows outgoing and interm
diate resonances for the first and further order proces
respectively. Spectra at\v l52.623 eV and\v l52.653 eV
present outgoing resonances for the two (414 cm21 in the
Raman shift! and the three phonons contributions, resp
tively. The two-phonon peak in the Raman cross section
stronger than the other ones, while the three-phonon ou
ing resonance can be appreciated in this picture as a
peak in the Raman shift at 617 cm21, even weaker than the
nonresonant second-order peak at 414 cm21 . Figure 5~b!
presents our calculation for a QD withR52.9 nm. As ex-
pected, the spectra are shifted to lower energy and incom
resonance is observed at\v l52.183 eV, while outgoing
resonances are obtained at\v l52.209 eV,\v l52.236 eV,
and\v l52.262 eV for the single phonon and the second a
third overtones, respectively. It can be observed in Fig. 5 t
for dots with larger radii, up to 2.9 nm, there is a slig
increase in the third-order cross section corresponding to
outgoing resonance.

Figure 6 shows the measured MRRS of Cd
nanocrystals.13 We have performed calculations of th
MRRS within the framework of the model developed in th
paper, in order to compare its ability to reproduce the exp
mental data. The parameters employed are the same as i
Figs. 2, 3, and 4. The total average Raman cross section

s

FIG. 5. Three-dimensional plot of the multiphonon resonant R
man cross section as a function of the Raman shift and laser en
~a! Single spherical CdSe nanocrystal with 1.9 nm radius.~b! R
52.9 nm. Incoming and outgoing resonances are labeled by I
O, respectively, and are indicated by arrows.
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sum of the first-, second-, and third-order cross sectionsSD
( i )

( i 51,2, and 3) using Eq.~13!. In Fig. 6~a! and 6~b! the
calculations and the experimental spectra have been nor
ized at vs5414 cm21, corresponding to the second-ord
process. To fit the experimental data, the calculated fi
order cross section was multiplied by a factor of 13 and 2
for QD’s with Rm51.9 nm@Fig. 6~a!# and 4.0 nm@Fig. 6~b!#,
respectively. The evaluated third-order cross section
been divided in Fig. 6~b! by a factor of 4.74. The theoretica
predictions are shown in Fig. 6 as solid lines and the exp
mental data as black squares. Semiquantitative agree
between theory and measured scattering intensities is fo
without invoking nonintrinsic physical interactions to obta
the relative intensities of the Raman overtone. Neverthel
to provide a completely quantitative description of the ov
all measured spectra, a correction prefactor ranging fr
three to ten has been inserted in Eq.~3!. Despite these
‘‘fudge’’ factors, the agreement between the measured sp

FIG. 6. Multiphonon Raman cross section of two ensembles
CdSe nanocrystals. A Gaussian radius distribution function w
10% FWHM is assumed for both ensembles.~a! Spectrum at\v l

52.572 eV andRm51.9 nm.~b! Spectrum at\v l52.184 eV and
Rm54.0 nm. Experimental data are represented by black squ
and theoretical calculations by the solid lines. In the calculation
parameters employed are the same as in Figs. 2–4. The rel
overtone intensities have been fitted by weighting thei th order
cross sectionsSD

( i ) @see Eq.~13!# according to the equationSD

5ASD
(1)1SD

(2)1BSD
(3) . In ~a! A513 and B51, while in ~b! A52.55

and B51/4.75.
al-
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tra and those calculated by us is significantly better than w
the mechanisms used hitherto in order to describe MRRS
QD’s, as will be discussed in the next section. The spectr
of Fig. 6~a! ~an ensemble of dots withRm51.9 nm! does not
present the overtones with three phonons. In this case
calculation shows that the third-order Raman cross sectio
103 times smaller than the second-order contribution,
agreement with the experimental observation.

The differences of the relative overtone intensities b
tween the theory and the experimental data can be expla
as follows. First, an interesting feature is observed in
calculated Raman cross section where the intensity of
first-order process is, in general, smaller than that co
sponding to two overtones. This result can be due to
simplified electronic band model, where the valence ba
have been assumed to be parabolic, without band mix
The one-LO-phonon Raman cross section is known to
very sensitive to the difference between the electron and h
wave functions.22,32 The decompensation between electr
and hole densities can be affected by either the electron-
Coulomb interaction, different confinement barriers for t
electron and hole, or band-mixing effects. Using differe
confinement radii for the electron and hole, up to 10% d
ference to simulate the penetration of the wave function i
the matrix and in the framework of the infinite barrier wi
parabolic band model, we have found huge values for
first-order Raman intensities. The one-phonon absolute
tensity is an interesting and delicate problem that merits
independent study and also experimental measuremen
absolute values. On the other hand, higher-order proce
are possible through different channels, with participation
phonons withl p>1 and excitons of different symmetries. I
this case the Raman absolute values are not sensitive to
electron-hole decompensation effect. Notice that the rela
between the first- and second-order intensities is not de
mined simply by a Huang-Rhys parameter33,34 due to domi-
nant additional scattering channels allowed in the seco
order process. Second, the experimental data are taken
a commercial filter, which was assumed to contain Cd
nanocrystalites with a Gaussian distribution forR and a rela-
tive size dispersion of 10%. The mean radius was estima
from the maximum of the absorption coefficient and the f
mula E(Rm)5\2p2/2m̄Rm

2 for the free electron-hole pai
completely confined model energy.13 The Rm value depends
rather critically on the exact electron-hole energy functio
which is itself sample dependent.10 This procedure is not
very accurate when used to deduce the QD radius by c
paring the energies to experimental data. We have stu
the influence of the size distribution function on the MRR
for a fixed laser photon energy. There is a set of radii
which the nanocrystals are in either incoming, intermedia
or outgoing resonance with different exciton levels. T
cross section is the average of the cross sections for th
radii, weighted by the size distribution function. We foun
that for Rm52.9 nm, the second-order cross section is
times larger than the third-order one, but 5 times smaller
Rm54.0 nm. It is possible to obtain the ratio of two- t
three-phonon intensities using as a fit parameter the m
radius. Instead, we chose to multiply the overtone inten
by a fitting factor~of the order of 10! when comparing with
available MRRS experiments.
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D. Huang-Rhys factor

The success in reproducing the MRRS experiments
the relative overtone intensities indicates clearly that any
oretical model used to describe the Raman spectra nee
include all excitonic and phonon channels that contribute
light dispersion in quantum dots. Notice, that large values
the Huang-Rhys~HR! factor are not invoked in the prese
formalism to reproduce the experimental data. The Hua
Rhys factor taking into account excitonic states is evalua
with the equation17

D25(
p

U^N,L,M ,Pue@wF
p~re!2wF

p~rh!#uP,M ,L,N&
\vp

U2

.

A direct calculation ofD2 for a CdSe QD (L50,M50,P
51, andl p50 phonon! gives values about 1023.

Several authors have studied the electron-phonon c
pling strength in nanocrystals, e.g., CdSe,11–15,35 CuCl,36

CuBr,37 and CdS.38 Usually, Raman and luminescence spe
tra have been interpreted within the Franck-Condon mo
The idea behind this approach is that for any instantane
ion position, the electronic subsystem is in a stationary st
Hence, the electron-lattice interaction leads to instantane
modifications of the electronic stationary states without
currence of any electronic transitions. Moreover, the excit
phonon coupling factor is identified with the Huang-Rh
factor, using this as a fitting parameter for the relative int
sities of different orders in Raman spectra. The calculati
of the Huang-Rhys parameter for intrinsic exciton states
CdSe14 and PbS17 nanocrystals have given values that are
small compared with those needed to explain the experim
tal results. In order to understand this disagreement, o
extrinsic mechanisms have been invoked such as: dono
exciton with the hole localized at the dot center,18 hole traps
at the surface with a trapping radius obtained from a fitt
procedure,15 or placing an extra charge in the nanocrys
center.14 However, no definite evidence has been given
the dominating role of extrinsic states in Raman processe
quantum dots, while both types of intrinsic and extrins
states have certainly been observed in luminesce
experiments.8,15,39,40Also, a nonadiabatic theory41 has been
invoked to obtain better agreement with the experimen
data. The calculations presented here explain the obse
large overtone intensities in Raman spectra without resor
to any mechanism other than intrinsic and adiabatic one

The explanation of why such large values of Huang-Rh
parameter have been obtained from experimental dat
found in the simplified theory used to interpret the expe
ments. The Franck-Condon scheme is particularly useful
small molecules, where forces acting on ions depe
strongly on the electronic state. The Raman polarizabi
can be split in two contributions: Albrecht’s A˜ and B̃
terms.22,42The largest contribution comes from Albrecht’s˜

term, accounting for multiphonon processes. The term A˜ in
conjunction with the offset oscillators model~this model
states that the ionic potential energy parabola is displace
an amountD in units of the oscillator length! is used to fit the
experimental data.13,17,35,36The offset squareD2, taken as a
fitting parameter, is then interpreted as the Huang-Rhys
rameter. However, if the resonant Raman scattering is m
ated by extended states, as usually occurs in large molec
d
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and solids, the vibrational states do not depend on a sin
electronic excitation~which means thatD2.0). In this case
the Ã term contributes only to elastic scattering. Accor
ingly, the B̃ term, calculated as a perturbation correction
Ã, is exactly the result of Ref. 27, i.e., the first-order Ram
process. The overtones can be properly described if hig
corrections to the A˜ term are taken into account. We mu
remark that Albrecht’s A˜ term cannot explain the optica
vibrational Raman scattering if the intermediate electro
excitations are extended states. Any estimation of the Hua
Rhys parameter based on this model should give, in p
ciple, artificially large values. A definite test for the ina
equacy of the HR factor treatment could be obtained
measuring absolute values of Raman efficiencies. A the
that satisfactorily fits the experimental absolute values of
resonance profile could clarify the role of the Huang-Rh
parameter and the exciton-phonon interactions in QD’s.

IV. CONCLUSIONS

We have presented a general treatment for calculating
multiorder resonant Raman-scattering spectra of sphe
semiconductor nanocrystals. The treatment considers
fined Wannier-Mott excitons in the effective-mass appro
mation and the full symmetry of the optical vibration
through the coupling between the electrostatic potential
mechanical displacement parts of the problem. The theor
particularly important for very small QD’s where a Fro¨hlich
exciton-phonon interaction operator takes into account
mixing between confined and interface modes through m
chanical and electrostatic boundary conditions. In our cal
lation, the effects of identical phonons contributing to t
Raman cross section for a given order have been conside
An important feature of the Raman profile is the presence
outgoing resonance peaks larger than the incoming ones
all scattering processes. Figure 5 shows that the stron
Raman line corresponds to the outgoing resonance for
second-order process. The physical reasons are the fol
ing: ~1! First-order scattering is quasiforbidden;~2! The
Fröhlich coupling constant is smaller than one for Grou
II–VI semiconductors, which favors the second order
comparison with the third-order processes;~3! For the QD
radii studied here, the intermediate states, in general, are
in resonance simultaneously with the outgoing channels.

The numerical results for CdSe nanocrystals presen
here do not only reproduce the main trends of the experim
tal results, but also teach us that in order to extract comp
hensive information from the comparison between the
and MRRS experiment in nanocrystals, it is necessary to~a!
precisely tune the resonance conditions,~b! to know the ex-
citon energy levels, and~c! to know the size distribution
function of the nanocrystals. We have shown that the
merical results for the Raman cross section are very sens
to all these parameters. The above facts have been alr
pointed out by Scamarcioet al.,35 where the authors tune
simultaneously the laser frequency and the dot radii wh
keeping the resonance conditions.

The problem of the traditional interpretation of MRR
spectra in terms of the Huang-Rhys parameter34 has been
stressed, concluding that multiphonon Raman scattering
be correctly described if a detailed analysis of the resona
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conditions, vibrational modes, and excitonic states in the
semble is carried out. It is shown that a treatment based
Huang-Rhys parameter is not appropriate for describing
relative overtone intensities since other significant scatte
and interference channels have to be taken into accoun
the Raman cross section.

In order to fit the intensity of the one-phonon process
better knowledge of the exciton wave function is need
Due to the charge decompensation effect, the absolute
phonon scattering intensity depends strongly on the detai
id

i-
,

P.

. P

. B

ev

ys

B

nd

. B

J.

o
re
on

, in

.

.

n-
a
e
g
in

a
.
e-
of

the exciton wave function.32 To test our model, calculation
and comparison to experiments for other materials are
rently in progress.
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