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Resonance Raman scattering in semiconductor quantum dots:
Adiabatic versus time-dependent perturbation theory

E. Menéndez-Proupin and Nana Cabo-Bisset
Facultad de Fı´sica-IMRE, Universidad de La Habana, Vedado 10400, La Habana, Cuba

~Received 28 December 2001; published 20 August 2002!

The adiabatic theory of resonance one-phonon Raman scattering in semiconductor nanocrystals is revised
and extended with perturbative nonadiabatic corrections, given by Albrecht’sB term. This theory is confronted
with the time-dependent perturbation approach, pointing at their differences and similarities. It is shown that
both theories are equivalent in the limit of weak electron-phonon coupling and nondegenerate or uncoupled
resonant states. Evaluations of theA andB terms for the confined LO phonon in CdSe and CdS nanocrystals
are reported. These evaluations show that theB term can usually be neglected.
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I. INTRODUCTION

In the interpretation of resonant Raman scattering
quantum dots, two theories have been mostly used. The
one is based on the Albrecht’s theory1 of light scattering
from small molecules, where the excited levels that cont
ute to the Raman polarizability are considered as vib
states in the adiabatic approximation. This theory also c
sidered perturbative nonadiabatic corrections, but these
have been neglected in quantum dot studies.2–9 Moreover,
the exciton-phonon coupling factor has been identified w
the Huang-Rhys factor, using this as a fitting parameter
the relative intensities of different orders in Raman spec
However, the calculations of the Huang-Rhys parameter
intrinsic exciton states in PbS~Ref. 9! and CdSe~Refs.
10,11! nanocrystals have given values that are too sm
compared with those needed to explain the experimenta
sults of multiphonon Raman scattering. Extrinsic mec
nisms such as donorlike exciton,12 surface hole traps,13 or
extra charges10,14 have been invoked to resolve the discre
ancy.

A different model of Raman scattering in quantum do
was conceived from a solid state point of view. In this a
proach, the Raman cross sections are calculated from thi
higher order time-dependent perturbation theory~TDPT!
~Refs. 15–17! and the intermediate virtual states are cons
ered as tensorial products of electronic states, lattice vi
tions, and photons. A nonperturbative calculation of m
tiphonon Raman spectra have been recently presented.14 Not
having adjustable parameters this model has scarcely
used by experimentalists to interpret their data. Moreover
to now it is unclear the relation between the TDPT and
Albrecht’s theory.

The purpose of the present article is~1! to establish the
relation between Albrecht’s theory and TDPT and~2! to in-
vestigate the importance of nonadiabatic corrections wit
Albrecht’s theory. The structure of the paper is as follow
First, we give an overview of both theoretical approach
and show their interrelation. Next, we explain the calculat
of the Albrecht’sA andB terms for semiconductor nanocry
tals. Finally we discuss the numerical results obtained
0163-1829/2002/66~8!/085317~8!/$20.00 66 0853
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several types of nanocrystals and present our conclusi
Several mathematical steps are given in the appendixes

II. THE THEORIES

A. Time-dependent perturbation theory

For a one-phonon Raman process the differential cr
section is given by15

d2s

dVsdvs
5

V2vs
3h lhs

3

4p2c4v l\
(
F

uMFI
(1)~p!u2d~\v l2\vs2\vp!,

~1!

whereh l (hs) is the refraction index at the incident~scat-
tered! light frequencyv l (vs),V is a normalization volume
of the radiation field, andc is the velocity of light in vacuum.
The one-phonon transition amplitudeMFI

(1)(p) can be calcu-
lated by time dependent perturbation theory, considering
unperturbed Hamiltonian as the sum of the electronic, latt
and radiation operators

H05HE1HL1HR ,

while the perturbation is the sum of electron-lattice, electro
radiation, and lattice-radiation interactions~the last one is
negligible in resonance conditions!

H int5HE-L1HE-R1HL-R .

The electron-lattice interaction can be expressed as

HE-L5 (
m,m8,n

^muHE2L
1 ~n!um8&D̂m

† D̂m8b̂n
†

1 (
m,m8,n

^muHE-L
2 ~n!um8&D̂m

† D̂m8b̂n , ~2!

where D̂m8 (D̂m
† ) and b̂n (b̂n

†) are annihilation~creation!
operators of electronic and vibrational excitations, resp
tively, while HE-L

1 (n) and its Hermitian adjointHE-L
2 (n) are

operators that act on the electronic system.16 The operators
HE-R andHL-R have a similar structure to that ofHE-L . The
phonon states created byb̂n

† are those of the electroni
ground stateG. The electronic excitationsmÞG can be con-
sidered as electron-hole pairs and confined excitons. He
the one-phonon Raman transition amplitude can be ca
lated by third order perturbation theory as
©2002 The American Physical Society17-1
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MFI
(1)~p!5 (

m1 ,m2(ÞG)

^GuHE-R
1 um2&^m2uHE-L

1 ~p!um1&^m1uHE-R
2 uG&

~\v l2Em2
2\vp1 iGm2

!~\v l2Em1
1 iGm1

!
, ~3!
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where Gm are the lifetime broadenings of the electron
excitations. The interaction matrix elemen
^m2uHE-L

1 (p)um1&,^GuHE-R
1 um2&, and ^m1uHE-R

2 uG& have
been calculated under two approximations of solid st
theory: the effective mass approximation and a long w
continuous model for the optical phonons~a field theory ap-
proach!. Working expressions can be found elsewhere.15–21

The conditions of validity of the above formalism can
summarized as~1! the scattering process is dominated
extended vibrational states, which are not affected by sin
electron excitations, as is usual in large molecules and so
and~2! excited electronic states are well separated in ene
from the ground state.

B. Albrecht’s theory

In this scheme, the wave functions of the molecule~or the
quantum dot! are considered in the adiabatic Bor
Oppenheimer approximation

Cev~$r %,$Q%!5Qe~$r %,$Q%!Fev~$Q%!,

wheree andv are the sets of electronic and vibrational qua
tum numbers, respectively,$r% is the ensemble of electro
d
l

n-

r
ple
tri
c’s

-
e
rg

08531
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coordinates of the molecule~or the quantum dot!, and$Q% is
the ensemble of normal coordinates of the ions. The vib
tional wave functionFev is factored as a product of the wav
functions of all the normal modes

Fev~$Q%!5wv1

e ~Q1!wv2

e ~Q2!•••, ~4!

va being phonon occupation numbers. According to the d
persion theory, Albrecht obtained the Raman polarizabi
tensor for resonance scattering as

aJ5AJ-1BJ-1HOT1NRT,

where HOT means higher order terms and NRT nonreson
terms.

The A andB terms are given by

~AJ-!gi,g j5 (
(e),v

Me,g
0 Mg,e

0 ~giuev !~evug j !

\vev,gi2\v l1 iGe8
~5!

and
~BJ-!gi,g j5 (
(e),v,s,a

hse
a Me,g

0 Mg,s
0 ~giuQauev !~evug j !1hes

a Ms,g
0 Mg,e

0 ~giuev !~evuQaug j !

~\vev,gi2\v l1 iGe8!~\ve,s!
. ~6!
-

s

In the above expression we follow Albrecht’s notation,1 but
we use dyadic notation instead of tensor subindexes,\v l

instead of hn0 for incoming photon energy, and\va,b

5Ea2Eb . ugi),uev),ug j) are the initial, intermediate an
final vibrational states@Eq. ~4!#, respectively, in the potentia
energy fields of the electronic statesg ~ground! and e ~ex-
cited!. Ma,b

0 and hse
a are, respectively, dipole and electro

phonon interaction matrix elements~see Table I!. Also, the
order of some matrix element indexes is reversed in orde
generalize the Albrecht’s expressions for the case of com
wave functions. Note that the order of subindexes in ma
elements in this notation is the opposite of that in Dira
notation. The summation on the index~e! can be restricted to
the resonant statee. The s states in Eq.~6! appear from a
perturbative expansion ofQe($r %,$Q%) in terms of
Qs($r %,$0%).

The above formalism is valid if~1! the e states are non
degenerate or uncoupled to other states with the same en
and~2! excited electronic states are well separated in ene
from the ground state.
to
x

x

rgy
y

1. The offset oscillators model

In this model, the vibrational statesw i a
g (Qa) andwva

e (Qa)

are assumed to be localized in parabolicVg(e)(Qa) potentials
with the same curvature, but the origin ofVe shifted in
DQa5A2xa0Da5A2A\/vaDa . In many cases, only one vi
brational mode is assumed andDa is employed as fitting
parameter. Moreover,Da

2 is identified as the Huang-Rhy
factor.2,10 The integrals appearing in theA and B terms are
given by

~gluev !5Av!

l !
e2Da

2/2Da
l 2vLv

l 2v~Da
2! ~7!

and

~evuQaugl !5xa0Al 11

2
~g,l 11uev !1xa0A l

2
~g,l 21uev !

~8!

5xa0

l 2v1Da
2

A2Da

~gluev !,
7-2
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whereLm
p are the Laguerre generalized polynomia andxa0

5A\/va.
Several authors have used this model to study

electron-phonon coupling in nanocrystals.2,5–9 All of them
have considered only the termA and have usedDa

2 to fit the
overtone/fundamental intensity ratios of Raman spectra.
fitted values ofDa

2 are near 1, in contradiction with micro
scopic calculations.10,11

2. The limit of weak electron-phonon coupling

In the limit of weak electron-phonon coupling the osc
lator offsetDa should be small. Expanding Eqs.~7! and ~8!
in powers ofDa we find

TABLE I. Equivalence of Albrecht and TDPT notations.

Magnitude Albrecht’s TDPT

Electron excited states e,s m2 ,m1

Electron ground state g G

Matrix element 2iA2p\vs,g

Vh l
2

el•Mg,s
0 ^m1uHE2R

2 (el ,0)uG&

Matrix element x0hse
p ^m2uHE-L(p)um1&
08531
e

e

~evugi !5dv,i1FA i !

v!
dv,i 212Av!

i !
dv,i 11GDa1O~Da

2!

~9!

and

~evuQaugi !5E w i a
~Qa!wva

~Qa!Qa dQa

5xa0FAva

2
dva ,i a111Ai a

2
dva ,i a21G

1
x0aDa

A2
FA i !

v!
@~ i 11!dv,i1dv,i 22#

2Av!

i !
~ idv,i1dv,i 12!G1O~Da

2!. ~10!

Replacing Eq.~9! in Eq. ~5! we obtain

~AJ-!gi,g, j5d i , j

Me,g
0 Mg,e

0

Ee,g2\v l2Da
2\va1 iGe8

1O~Da!.

This means thatAJ- contributes mainly to Rayleigh scatte
ing. Nevertheless, the term proportional toDa is important
for one-phonon Raman scattering. To first order inDa we
find that
on
ature (
~AJ-!g0a ,g1a
5

2Me,g
0 Mg,e

0 Da\va

~Ee,g2Da
2\va2\v l1 iGe8!@Ee,g1~12Da

2!\va2\v l1 iGe8#
.

On the other hand, substituting Eqs.~9! and ~10! in Eq. ~6! we obtain that, up to first order in the electron-phon
interaction, the B term is non-null only for one-phonon Raman processes. For Stokes processes at low temperi a

50,j a51) we obtain

~BJ-!g0a ,g1a
5 (

(e),s
H Me,g

0 Mg,s
0 hse

a xa0 /A2

@Ee,g1~12Da
2!\va2\v l1 iGe8#~Ee2Es!

1
Ms,g

0 Mg,e
0 hes

a xa0 /A2

~Ee,g2Da
2\va2\v l1 iGe8!~Ee2Es!

J .

In the second term, one can exchange the indexese ands. Next, under the conditionuEe2Esu@u\va1 i (Ge82Gs8)u one obtains

~BJ-!g0a ,g1a
5 (

e,sÞe

2Me,g
0 Mg,s

0 hse
a xa0 /A2

@Ee,g1~12Da
2!\va2\v l1 iGe8#~Es,g2Da

2\va2\v l1 iGs8!
. ~11!

Noting thatDa
2!1, Da\va52^euHE-L(a)ue&, andhse

a xa0 /A25^euHE-L(a)us& ~see Appendixes A and B!, we see thatAJ-

1BJ- for one-phonon emission reduces to the same result that the TDPT.
7-3
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III. CALCULATION OF AI- AND BI-

A. Effective mass approximation

We use the exciton wave functions and the electr
phonon operator of Ref. 20 to estimate theA andB terms in
nanocrystals of several semiconductors. Using Table II
the effective mass approximation we have

Mg,e
0 5

ie

m0ve,g
pszj z ;ef oe

,

TABLE II. Parameters used in the calculations. When not in
cated, the source is Ref. 20 for CdS and Ref. 19 for CdSe.

Parameter CdS CdSe
CdSe

~MBEMA !

Eg (eV) 2.6 1.865 1.841a

me /m0 0.18 0.12 0.13b

mh /m0 0.51 0.45
g1 1.66b

g2 0.41b

2m0P2 (eV) 21c 20c 20c

k 7.8 9.53 9.53
Ve (eV) 2.5 ` 0.6b

Vh (eV) 1.9 ` `b

vL (cm21) 305 213 213
vT (cm21) 238 165 165
e0 8.7d 9.53 9.53
e` 5.3 5.72d 5.72d

bL (1026) 2.68 1.58 1.58
Gm (meV) 5 5 5

aReference 33.
bReference 28.
cReference 34.
dCalculated from the Lydanne-Sachs-Teller relation.
io
la
de
nc
on
m

m
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where f oe
is the envelope overlap integral (oe being the set

of envelope quantum numbers!

f oe
5E Coe

~r ,r !* d3r .

pszJz ;e is the bulk momentum matrix element between t
couple of bands to which the excitone belongs. For the
valence bandJz563/2, 61/2 and for the conduction ban
sz561/2.

We evaluate the relative importance of the termsA andB
for semiconductor nanocrystals. Assuming only one vib
tional mode and focusing on one-phonon creation proce
at low temperature~i.e., i 50 andj 51), the resonant term in
Eq. ~5! is reduced to

~AJ-!gi,g j5S (
sz ,Jz

pszJz ;e* pszJz ;eD S e\ f oe

m0Ee,g
D 2

3(
v

~giuev !~evug j !

Ee,g1~v2D2!\vLO2\v l1 iGe8
.

~12!

The first term between parentheses is a band factor and i
responsible of the angular pattern of the scattered inten
The summation oversz ,Jz , is performed to take into accoun
the degeneracy of conduction and hole bands, giving22

(
sz ,Jz

pszJz ;e* pszJz ;e5
~2J11!

3
~m0P!21I, ~13!

whereJ53/2 ~1/2! if the upper valence band haveG8 (G7)
symmetry andP52 i ^Su p̂xuX&/m0.

To evaluate the B term we also need to include
electron-phonon matrix elementsx0hse5A2^euHE-Lus& ~see
Appendix B!. With these considerations we obtain

-

~BJ-!gi,g j5S (
szJz

pszJz ;e* pszJz ;sD S e\

m0
D 2

(
v,os

f oef osA2^euHE-Lus&$~giuQuev !~evug j !/x01~giuev !~evuQug j !/x0%

Ee,gEs,gEe,s@Ee,g1~v2D2!\vLO2\v l1 iGe8#
. ~14!
no

nd
ion

en-
We evaluatê euHE-Lus& as in Ref. 20. Due to the Fro¨hlich
interaction cannot cause intersubband transitionspszJz ;s*

5pszJz ;e* and the band factor in Eq.~14! is the same as that in

Eq. ~12!. Intersubband transitions may occur via deformat
potential interaction, but these are usually negligible in po
materials. It must be noticed that it is not possible to consi
this mechanism within the Albrecht’s theory, as the existe
of degenerate hole states connected by the electron-ph
interaction means a breakdown of the adiabatic approxi
tion, which is reflected in null denominatorsEe,s in Eq. ~14!.
Nevertheless, TDPT can deal with it without trouble. Fro
this result we conclude that theA and B terms are scalars
~with small tensorial corrections forB) and the integration
n
r
r
e
on

a-

over nanocrystal orientations and light polarization has
effect on the ratio between theA andB terms.

B. Multiband effective mass theory

In a multiband formalism, the essential effect of ba
mixing can be captured using the spherical approximat
for the hole Hamiltonian23

Hh5
g1

2m0
S p̂22

m

9
~P(2)

•J(2)! D1V~r !,

V(r ) being the confinement potential,P(2) and J(2) are
spherical rank tensors built from linear and angular mom
7-4
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tum operatorsm52g2 /g1, andg2 andg1 are Luttinger pa-
rameters.

Electron-hole pair states with well defined total~Bloch
1orbital! angular momentum quantum numbersM and Mz
can be obtained as

ue&5 (
n,N,l ,L, f ,F

CnNlLsJ f FMMz

(e) unNlLsJ f FMMz&

5 (
n,N,l ,L, f ,F, f z ,Fz

CnNlLsJ f FMMz

(e)

3~ f F f zFzuMMz!unls f fz& ^ uNLJFFz&,

where (f F f zFzuMMz) is a Clebsch-Gordan coefficien
Lowercase~uppercase! letters denote electron~hole! quan-
tum numbers.unls f fz& and uNLJFFz& are electron and hole
states with well defined total angular momentum, their wa
functions given by

^r unls f fz&5 (
l z ,sz

~ lslzszu f f z!Rnl~r !Yll z
~u,w!^r ussz&,

^r uNLJFFz&5 (
K5L,L12

(
Lz ,Jz

~KJLzJzuFFz!

3RNK
(F,L)~r !YKLz

~u,w!^r uJJz&.

In the above expressionRnl(r ) are the radial wave function
of a particle in a spherical box andRNK

(F,L)(r ) are the solutions
of the MBEMA equations given elsewhere,24,25Yll z

(u,w) are

the spherical harmonics,26 ^r ussz& areG6 Bloch function and
^r uJJz& are hole Bloch functions. The hole Bloch function
are related with theG8 (J53/2) electronic Bloch functions
uJ,Jz& by the rule uJJz&5(21)J2JzuJ,2Jz& ~derived from
the time-reversal operation!. Our uJJz& are u3/2,63/2&
57( i /A2)(X6 iY)u6& and u3/2,61/2&5( i /A6)@2Zu6&
7(X6 iY)u7&].
rre
ve
on

08531
e

Within this basis, in the strong confinement regime, t
Coulomb interaction can be treated by direct diagonalizat
of the Hamiltonian or even by simple perturbation theo
Using the theory of angular momentum,27 compact expres-
sions for the matrix elements can be obtained. The dip
matrix elements gives

Mg,e
0 5 i êMz

*
2Pe\

Ee,g
dM ,1~21! f 15/2A~2 f 11!~2F11!

3

3H 1 3/2 1/2

l f F J ~d l ,L1d l ,L12!

3E RNl
(F,L)~r !Rnl~r !r 2dr,

whereRnl andRNL
(F,L) are electron and hole radial function

respectively, and

ê05k, ê6157
i6 i j

A2
.

In the A term we must sum over the degeneratee states
with different Mz , which turns out in a term proportional t
the diagonal tensor

~AJ-!gi,g j51I
4P2e2\2

Ee,g
2

dM ,1~d l e ,Le
1d l e ,Le12!

3
~2 f e11!~2Fe11!

3 H 1 3/2 1/2

l e f e Fe
J 2

3F E RNel e

(Fe ,Le)
~r !Rnel e

~r !r 2dr G2

3(
v

~giuev !~evugi !

Ee,g1~v2D2!\vLO2\v l1 iGe8
.

The B term for l p50 phonons gives
BJ-u l p5051IdM ,1(
(e),s

4P2e2\2

3Ee,gEs,g
H 1 3/2 1/2

l e f e Fe
J H 1 3/2 1/2

l s f s Fs
J ~21! f e1 f s13A~2 f e11!~2 f s11!~2Fe11!~2Fs11!

3~d l e ,Le
1d l e ,Le12!~d l s ,Ls

1d l s ,Ls12!E RNel e

(F,Le)
~r !Rnel e

~r !r 2dr

3E RNsl s

(F,Ls)~r !Rnsl s
~r !r 2dr^suHE2L

( l p50)ue&(
v

A2

x0

~giuQuev !~evug j !1~giuev !~evuQug j !

~Ee,s!~Ee,g1~v2 i 2D2!\vLO2\v l1 iGe8!
.

two

-

n

IV. DISCUSSION

Table III shows the Huang-Rhys parameterD2, theA term
absolute value, and the ratiouA-/B-u, calculated for typical
nanocrystals 20 Å in radius. The photon energies, co
sponding to incoming resonance with the lower exciton le
are also indicated in the table. The incomplete exciton c
-
l
-

finement in CdS nanocrystals has been considered with
different models.~1! Finite band offsetsVe andVh ~Ref. 21!
and ~2! an effective radius.20 Moreover, for CdSe nanocrys
tals we have also considered two models:~1! effective
radius19 and ~2! multiband effective mass approximatio
~MBEMA ! along with finite conduction band offsetVe .28
7-5
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As it has been noticed,20,21 Raman scattering is quasifo
bidden in quantum dots in the strong confinement regim
The scattering is possible through adecompensationbetween
the electron and hole wave functions, which may appear
to ~1! the Coulomb electron-hole interaction and differen
between electron and hole masses,~2! difference in electron
and hole confinement,~3! hole band mixing,~4! defects, and
~5! nonadiabatic effects.14 The electron-hole decompensatio
also has a direct relation with the Huang-Rhys parame
This one is larger in the case of CdS, where incompl
confinement have been considered, and in CdSe when
mixing and incomplete electron confinement have been
cluded. These ones are the cases where larger Raman p
izabilities are obtained. Notice that, due to the finite elect
confinement assumed, our Huang-Rhys parameter for C
nanocrystals within MBEMA is larger than other report
theoretical values10,11and is within the order of magnitude o
the experimental values.2,3,29,30

In all the cases examined, theA term determines the Ra
man polarizability. This means that the interpretation of o
phonon Raman cross section considering only theA term is
consistent with the microscopic calculations using TDPT
ported here and in Refs. 15, 20, 21. However, it is incorr
to fit the Huang-Rhys factor from the overtone to fundam
tal intensity ratios in multiphonon Raman spectra, as diff
ent scattering channels give substantial contributions to
overtones.14,16,17

Let us consider the participation of optical phonons w
l p.0 in Raman scattering. These phonons connect dege
ate band-mixed exciton states and breaks the adiabatic
proximation. Hence, the Albrecht’s theory cannot descr
Raman scattering from these phonons. On the other hand
TDPT, may deal with degenerate states and nonadiab
processes. Calculations in Ref. 31 indicate that the role
l p.0 phonons in one-phonon Raman spectra is to cau
small shoulder near the interface phonon frequency, be
unimportant for the principal peak. Nevertheless,
electron-lattice interaction breaks the degeneracy of the
citon states, causing a redistribution of the exciton-phon
energy levels and possibly originate exciton-phonon co
plexes. Both these factors could substantially alter the p
dicted Raman spectra. This effect can be considered
TDPT of higher order in the electron-lattice interaction, or
a nonperturbative calculation of the exciton-phonon co
plexes. Research on this direction is presently in progres

V. CONCLUSIONS

We have established the connection between the two t
ries more used for resonance Raman scattering in semi

TABLE III. Numerical results for typical QD’s 20 Å in radius
The energies\v l correspond to incoming resonance with the low
Raman active exciton level in each nanocrystal.

Nanocrystal D2 \v l (eV) uA-/B-u uA-u (Å3)

CdS 0.08 2.870 13 8.13104

CdS (Re f) 0.0013 2.878 8.4 1.23104

CdSe 0.0008 2.592 27 7.93103

CdSe~MBEMA ! 0.2 2.280 32 6.43104
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ductor nanocrystals: the Albrecht’s theory based on the a
batic approximation and the time-dependent perturba
approach. In particular, we have shown that both theories
equivalent in the limit of weak electron-lattice interactio
and when the resonant exciton level is nondegenerate or
set of uncoupled degenerate states. We have evaluate
relative importance of the Albrecht’sA andB terms~the last
one not discussed in the literature! for CdSe and CdS nanoc
rystals, using different models for the electronic excitatio
We have found that the A term is the leading coefficient in
the cases considered. Additionally, we have given the exp
sions of the matrix elements of the electron radiation and
electron-lattice interactions for a model of exciton consid
ing the fourfold degeneracy of theG8 valence band. In the
framework of this model, we have obtained a theoreti
Huang-Rhys parameter within the order of magnitude of
perimental values.
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APPENDIX A: THE OSCILLATOR OFFSET

The adiabatic vibrational eigenstates for the electro
statee are obtained from the Hamiltonian

Ĥvibr
e 5^euHL1HE-Lue&

5(
a

$\vab̂a
†b̂a1^euHE-L~a!ue&~ b̂a1b̂a

†!%.

We have considered the case of HermitianHE-L(a). For non-
HermitianHE-L(a) see Appendix B. The unitary transforma
tion ĉa5b̂a2aa , with aa52^euHE-L(a)ue&/\va diagonal-
ize the Hamiltonian

Hvibr
e 5(

a
\va~ ĉa

†ĉa2aa
2!.

The new and old phonon coordinate operators are relate

Qa
e5A \

2va
~ ĉa1 ĉa

†!5Qa
G2A2A \

va
aa .

This relation identifiesaa with the oscillator offsetDa .

APPENDIX B: THE CONNECTION
BETWEEN THE CLASSICAL AND THE QUANTUM

ELECTRON-PHONON INTERACTION

The Hamiltonian operator determining the electron
eigenstates can be expanded in Taylor series of the vi
tional normal coordinates

HE~Q!5HE~0!1(
a

]HE

]Qa
Qa .

r
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The second term of the above formula is the electron-pho
interaction.

HE-L5(
a

]HE

]Qa
Qa . ~B1!

The quantum Fro¨hlich-type interaction operator have th
form32

HE-L5(
a

HE-L
2 ~a!b̂a1HE-L

1 ~a!b̂a
† ,

whereb̂a are annihilation operators of phonons in the norm
modesa. HE-L

6 (a) are operators that act on the electron
coordinates, e.g.,HE-L

2 (n,l ,m)5Fn,l(r )Yl ,m(u,w) for the
one-electron-phonon interaction in a semiconduc
nanocrystal.15 Making the transformation to coordinate an
momentum operators

b̂a5Ava

2\S Qa1
i

va
PaD ,

the interaction operator becomes

HE-L5(
a
Ava

2\
@HE-L

2 ~a!1HE-L
1 ~a!#Qa

1
i

A2\va

@HE-L
2 ~a!2HE-L

1 ~a!#Pa . ~B2!
08531
n
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If HE-L
2 (a)5HE-L

1 (a)5HE-L(a) then Eqs.~B1! and~B2! are
equivalent and

hes
a 5^su

]Hel

]Qa
ue&5A2va

\
^suHE2L~a!ue&.

When the vibrational modes in a nanostructure are descr
by complex fields there are modes for whichHE-L

2 (a)
ÞHE-L

1 (a). In this case, thanks to time reversal symmet
complex modes are double degenerate and real fields ca
obtained from the real and imaginary parts of the comp
fields, which correspond to real normal coordinates. The n
matrix elements can be obtained from the complex ma
elements as

^suHE-L
(1) ~a!ue&5

^suHE-L
2 ~a!1HE-L

1 ~a!ue&

A2
, ~B3a!

^suHE-L
(2) ~a!ue&5 i

^suHE-L
2 ~a!2HE-L

1 ~a!ue&

A2
. ~B3b!

APPENDIX C: EXCITON PHONON MATRIX ELEMENTS
WITH DEGENERATE BANDS

The matrix elements of the interaction of band-mixed e
citons with the optical phonons in a spherical nanocrystal
be calculated following the procedure outlined in Ref. 1
We obtained the expression
^n8N8l 8L8sJ f8F8M 8Mz8uHE2L
2 ~np ,l p ,mp!unNlLsJ f FMMz&

5^nNlLsJ f FMMzuHE2L
1 ~np ,l p ,mp!un8N8l 8L8sJ f8F8M 8Mz8&

5~21!M82Mz8
CF

AR
S M 8 l p M

2Mz8 mp Mz
DA~2M11!~2M 811!~2l p11!/4p

3H 2dF,F8dN,N8dL,L8~21!F1M1 f 1 f 81s

3A~2 f 811!~2 f 11!~2l 811!~2l 11! H f 8 f l p

l l 8 s J H M 8 M l p

f f 8 F J S l 8 l p l

0 0 0D E Rn8 l 8~r !Fnp ,l p
~r !Rnl~r !r 2dr

1d f , f 8dn,n8d l ,l 8~21!M81 f 1J12F (
K5L,L12

(
K85L8,L812

A~2F811!~2F11!~2K811!~2K11!

3H F8 F l p

K K8 J J H M 8 M l p

F F8 f J S K8 l p K

0 0 0D E RN8K8
(F8,L8)

~r !Fnp ,l p
~r !RNK

(F,L)~r !r 2drJ ,

whereFnp ,l p
(r ) is the radial part of the optical phonons electrostatic potential.15 The optical modes forl p.0 are described by

complex fields, real field matrix elements can be obtained from Eq.~B3!.
7-7
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For the Coulomb electron-hole interaction we obtained the expression

^n8N8l 8L8sJ f8F8M 8Mz8u
1

ure2rhu
unNlLsJ f FMMz&

5dM ,M8dMz ,M
z8
~21!s1J12 f 1F1F81MA~2 f 11!~2 f 811!~2F11!~2F811! (

K,K8,p
H p f f8

s l8 l J
3H p F F8

J K8 K J H p f f8

M F8 F JA~2l 11!~2l 811!~2K11!~2K811! S l 8 p l

0 0 0D S K8 p K

0 0 0D
3E E Rn8 l 8~r e!Rnl~r e!RN8K8

(F8,L8)
~r h!RNK

(F,L)~r h!
r ,

p12

r .
p21

dredrh .

In the above expression, due to the properties of the 3j symbols, the summation onp runs from max(ul2l8u,uK2K8u) to
min(l1l8,K1K8).
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