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We develope a theoretical model of first order resonant Raman scattering in spherical nanocrystals
which includes excitonic effects. Using a matrix diagonalization technique, the exciton wavefunc-
tions and energy states as a function of quantun dot radius are calculated. The Fr�ohlich interaction
between excitons and optical vibrational modes has been considered in the framework of a conti-
nuum theory which includes the mechanical and the electrostatic matching boundary conditions at
the interface. The Raman cross section and scattering efficiency are calculated for spherical CdS
and GaAs nanocrystals. Contrary to the case of uncorrelated electron-hole pairs, strong scattering
appears even in the case of infinite barriers. The results obtained for this case are compared with
calculations for finite barriers. The selection rules for optical transitions and exciton± lattice interac-
tion are derived for spherical dots in the dipole approximation. Only exciton states and vibrational
modes with angular momentum equal to zero are allowed in this approximation.

1. Introduction

During the last decade, intensive effort has been devoted to study the properties of quasi
zero-dimensional heterostructures or quantum dots (QDs). Technological improvements
have been accompanied by theoretical work aiming at elucidating their properties. Very
recently, the first order resonant Raman scattering via Fr�ohlich interaction has been
investigated for spherical nanocrystals [1]. Within the strong-confinement regime and
disregarding the exciton contribution, the electronic intermediate states were considered
as uncorrelated electron±hole pairs (EHP). The optical vibrational modes (vibrons) were
described by a phenomenological approach including the mechanical and electrostatic
matching boundary conditions at the interfaces [2]. The coupled modes have a mixture
of TO, LO and surface mode components with the concommitant electrostatic potential.
For the Raman intensity and in the dipole approximation, an electron± lattice selection
rule that only allows transitions involving vibrational modes with quantum number
lp � 0 was derived. Recently, Krauss et al. [3] measured the optical vibrons of PbS nano-
crystals by Raman and far-infrared spectroscopies, confirming the theoretical predictions
concerning the influence of electrostatic and mechanical matching boundary conditions
on the vibron modes of semiconductor nanocrystals. Since the Coulomb interaction be-
tween electrons and holes has been reported to have appreciable influence in the optical
properties of the QDs even in the strong confinement regime [4], the uncorrelated EHP
model for the forbidden Raman scattering can only be a first approximation. Moreover,
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electron±hole correlation should be important in establishing the resonant Raman pro-
file of these novel semiconductor nanostructures.

The present paper is devoted to a model of the first order resonant Raman scattering
which takes into account electron±hole correlation effects via Coulomb interaction. Our
goal is to describe quantitatively the effect of Coulomb interaction on the electron±hole
excitation energies and wavefunctions in order to obtain the resonant Raman scattering
amplitude probability for Fr�ohlich-type interaction in a spherical quantum dot. We
show that the Coulomb correlation determines the resonant scattering efficiency in the
case of infinite confinement for electrons and holes. In the next section, we develope a
nonperturbative approach for obtaining the exciton states in the framework of the envel-
ope function approximation. The electron and hole bands are assumed to be isotropic
and parabolic. This is not strictly correct for III±V and II±VI compounds, which have a
complex valence band structure, and the effects of band mixing may be significant.
Nevertheless, those effects decrease as the dot radius decreases [5] and they can be dis-
regarded here in a first approximation for small quantum dot radii. The expression for
the Fr�ohlich exciton±vibron interaction matrix element is given and exciton and vibron
selection rules are derived. In Section 3 we present calculations for the Raman cross
sections and Raman profiles for CdS microcrystallites in glass and GaAs dots in an AlAs
matrix. Section 4 summarizes the results.

2. Theory

The differential Raman cross section @2s=@W @ws per unit solid angle @W in a volume V
is given by [6]

@2s

@W @ws
� V

2w2
s hlh

3
s

8p3c4wl
W�ws; es� ; �1�

where

W�ws; es� � 2p

�h

P
F

jMFI ws; es; wl; el� �j2 d��hwl ÿ �hws ÿ �hwp� ; �2�

hl(hs), wl(ws� and el(es) are refractive index, the frequency, and the unit vector of the
polarization of the incident (scattered) light, respectively, c is the velocity of light in
vacuum and MFI the matrix element for scattering of a photon from state I�wl; el�j i to
state F �ws; es�j i with the simultaneous emission of one vibron of frequency wp. Neglect-
ing exciton±polariton effects, and taking into account only resonant terms, the matrix
element MFI can be written as a function of exciton±radiation HEÿR and exciton± lat-
tice HEÿP interaction Hamiltonians in lowest order perturbation theory as [7, 8]

MFI �
P

m1; m2

hF j HEÿR jm2i hm2j HEÿP jm1i hm1j HEÿR jIi
��hws ÿ Em2

� iGm2
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where jmii �i � 1; 2� refers to excitonic intermediate states, with Emi and Gmi the corre-
sponding energy and lifetime broadening. From (1) and (2) follows that the Raman
scattering @S=@W efficiency per unit solid angle is given by
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where in the final state we have a scattered photon with frequency ws � wl ÿ wp: The
exciton-radiation interaction Hamiltonian can be expressed as

HEÿR �
P
j; e; m
fT m

cvD
�
m aj; e � T m

cv
*Dmaj; eg �H:C: ; �5�

where D�m �Dm� is the creation (annihilation) operator for excitons with quantum number
m and aj; e the annihilation operator of photons with with wavevector j. In Eq. (5) T m

cv is
the exciton±photon coupling coefficient which for direct allowed transitions between
conduction (c) and valence (v) bands in the electric dipole envelope function approxima-
tion is [9]

T m
cv �

e

m0

���������
2p�h

wh2

s
el � pcv����

V
p

�
Ym�r; r� d3r �6�

e and m0 being the free electron charge and mass, respectively, pcv the bulk momentum
matrix element between v and c bands, and Ym the exciton envelope wave function in
the QD. The exciton± lattice interaction with long-wavelenth optical vibrons has the
following form [8]:

HEÿP �
P

n; m1n2

Sm2; m1
D�m2

Dm1
�bn � b�ÿn� ; �7�

where bn�b�ÿn� is the vibrons annihilation (creation) operator with quantum number n.
The exciton±vibron coupling constant Sm2; m1

can be written as

Sm2; m1
� e � Y*m2

�re; rh� �jF �re� ÿ jF �rh��Ym1
�re; rh� d3re d3rh �8�

with re�rh� being the electron (hole) coordinate. The term jF represents the electrostatic
potential associated to the optical lattice oscillations in the quantum dot. To describe
the interaction between electron and optical lattice vibration we follow the model of
[1, 2]. There, the optical vibrational modes of a spherical QD within a macroscopic con-
tinuum model which incorporates the elastic and dielectric properties of the constituent
materials were obtained. The model requires the coupling between the electrostatic po-
tential and the mechanical displacement vector u and the matching conditions are de-
rived from the system of four coupled differential equations for u and j. For the case of
complete confinement it has been shown that the Fr�ohlich-type electron±vibron cou-
pling ejF can be written as [1, 2]

ejF �
CF����
R
p Fnp; lp�r� Ylp;mp

�J; j� ; �9�

CF � e
�������������������������������������
2p�hwL�eÿ11 ÿ eÿ1

0 �
q

; �10�

where Fnp; lp with np � 1; 2; . . . ; lp � 0; 1; . . . is the radial part of the electrostatic po-
tential whose explicit form is given in Refs. 1, 10, Ylp;mp

�ÿlp � mp � lp� a spherical
harmonic, wL the bulk phonon frequency, e1 the high frequency dielectric constant, and
e0 the static dielectric constant. These modes have both confined and \surface" charac-
ter and are neither purely longitudinal nor purely transverse.
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2.1 Exciton wave function and correlation energy

We consider a spherical QD formed by a pure semiconductor with parabolic bands and
an infinite potential barrier at the sphere surface. In the framework of the envelope func-
tion approximation the Hamiltonian for the electron±hole pair (EHP) considering the
electron±hole correlation V �re; rh� via Coulomb interaction is given by

Ĥ � Ĥ0 � V �re; rh� ; �11�
where

Ĥ0 � ÿ �h2

2me
r2

e ÿ
�h2

2mh
r2

h � Ve�re� � Vh�rh� : �12�

If the surface dielectric mismatch is neglected

V �re; rh� � ÿ e2

e0jre ÿ rhj : �13�

In Eqs. (11) to (13) the subscripts e and h refer to electrons and holes, respectively, mi

and Vi (i � e, h) are their effective mass and spatial confinement potential. In our case
V �r� vanishes for r � R and is infinite otherwise. In Ref. [1] the Raman cross section
calculation has been performed considering an uncorrelated EHP described by the wave
functions

Y�re; rh� � jne; le;me
�re� jnh; lh;mh

�rh� �14�
with energy

Ene; le;nh; lh �
�h2

2R2

�x�le�ne
�2

me
� �x

�lh�
nh
�2

mh

 !
; �15�

where x�li�ni (i �e, h) are solution of the trascendental Eq. (8) of Ref. [1] and the electro-
nic states jn; l;m�r� are described by the wavefunctions

jn; l;m�r� � Rn; l�r� Yl;m�J; f� : �16�
The radial part of the wave function in the case of finite V0 band offset is presented in
Ref. [1]. For an infinitely high potential barrier the function Rn; l becomes the well-
known solution of the infinite spherical potential well problem [11]

Rn; l�r� �
�������
2

R3

r
jl�x�l�n r=R�
jjl� 1�x�l�n �j

: �17�

jl being the spherical Bessel function of the first type, and x�l�n its n-th node. We treat
the electron±hole correlation in the Hamiltonian (11) by a matrix diagonalization tech-
nique [4]. This consists in expanding the exciton wave function in a series of eigenfunc-
tions of H0, the total angular momentum square L̂2, and its z-component L̂z. Therefore,
we search for solutions of (11) of the form

YN;L;M�re; rh� �
P
a

C�a� Fa�re; rh� ; �18�

N , L and M being the quantum numbers corresponding to the exciton energy E, the
angular momentum square and its projection on a quantization axis, while a is the set
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of quantum numbers ne, nh, le, lh of uncorrelated EHP states. The eigenfunctions of the
total momentum L̂ are related to the usual one particle wave functions by [12, 13]

Fa�re; rh� �
P

me;mh

�lelhmemh j LM� jne; le;me
�re� jnh; lh;mh

�rh� ; �19�

�le; lh; me; mh j LM� being the Clebsch-Gordan coefficients [12, 13].
To find the coefficients C�a� in Eq. (18) we substitute YN;L;M in (11), multiply by

�Fa0 �re; rh� and integrate over all re, rh space, so that the following system of equations
is obtainedP

a
��Ene; le;nh; lh ÿ E� da0;a � Va0;a� C�a� � 0 : �20�

In this representation the matrix elements of the Coulomb interaction are given by [13]

Va0;a �ÿ 2ERaB
R

dL0; LdM 0;M
P1
k� 0

fk�le; lh; l0e; l0h; L�Gk�ne; n
0
e; nh; n

0
h; lel

0
e; lh; l

0
h� ;

�21�
where ER is the exciton Rydberg and aB the effective Bohr radius. fk is expressed in
terms of the Wigner's 3j and 6j symbols as

fk�le; lh; l0e; l0h; L� � �ÿ1�L� le � lh
���������������������������������������������������������������������������
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and r� � min �re; rh�, r� � max �re; rh�. For the case of infinite barriers the coefficients
Gk are numbers independent of semiconductor parameters. It should be noticed that the
3j symbols product in fk is nonzero only if max �jle ÿ l0ej; jlh ÿ l0hj� � k � min �jle � l0ej;
jlh � l0hj�. Also, the product of 3-j symbols is zero unless k� lh � l0h and k� le � l0e are
even numbers. Hence, if le � lh and l0e � l0h are numbers of different parity, the matrix
element vanishes and the states with unequal parity remain unmixed. Below we show
that the direct allowed optical transitions are those that produce EHP states with exci-
ton angular momentum L � 0. Therefore, for the purpose at hand, we only need to
evaluate the Clebsch-Gordan coefficients for L �M � 0: [12]

hlelhmemh j 00i � �ÿ1�le ÿme dle; lh dme;ÿmh
=
��������������
2le � 1

p
: �24�

2.2 Raman scattering intensity

The matrix element hmjHEÿR jIi is proportional to the oscillator strength f . Using
Eqs. (18) and (19) and the properties of Clebsch-Gordan coefficients (24), we find that

f � � YN;L;M�r; r� d3r� dL; 0dM; 0

P
a : �ne; nh; l�

�ÿ1�l �������������
2l� 1
p

CN; 0; 0�a� F0�l; ne; nh� ;
(25)
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where

F0�l; ne; nh� �
�1
0

Rne; l�r� Rnh; l�r� r2 dr : �26�

The L � 0 exciton states are composed of free EHP states with equal orbital quantum
numbers (le � lh); hence, in the above equations we have replaced le and lh by l. In
the infinite barrier approach F0�l; ne; nh� � dne; nh

. For the exciton± lattice matrix ele-
ment corresponding to exciton±vibron transitions we can write after substitution of
(19) in (8)

SN 0; L0;M 0;N;L;M �
P
a;a0

�Cm0 �a0� Cm�a�
P

me;mh;m0e;m
0
h

�lelhmemh j LM� �l0el0hm0em0h j L0M 0�

� CF����
R
p fdn0

h
; nh

dl0
h
lhhn0el0ej Fnp; lp jne; lei hYl0e;m0e j Ylp;mp

jYle;me
i

ÿ dn0ene
dl0elehn0h; l0hj Fnp; lp jnh; lhi hYl0

h
;m0

h
j Ylp;mp

jYlh;mh
ig : �27�

2.3 Selection rules

In the dipole approximation only L � 0 excitonic states are involved in photon absorp-
tion or emission processes. Hence, we only evaluate the exciton± lattice interaction ma-
trix elements hN 0; 0; 0j HEÿP jN; 0; 0i. From Eq. (27) and the explicit form of
L �M � 0 Clebsch-Gordan coefficients (24), we find

SN 0; N � CF����
R
p P

n0e; ne; n0h; nh; l

�CN 0CN
1

2l� 1

�fdn0
h
; nh
hn0e; ljFnp; lp jne; li ÿ dn0e; ne

hn0h; ljFnp; lp jnh; lig
Pl

m�ÿl
hYl;mj Ylp;mp

jYl;mi :

�28�
Using the addition theorem of spherical harmonics [14] we have

Pl
m�ÿl

hYl;mj Ylp;mp
jYl;mi �

� Pl
m�ÿl

jYl;m�J; j�j2 Ylp;mp
�J; j� dW

� 2l� 1������
4p
p dlp; 0dmp; 0 �29�

and

SN 0; N � dlp; 0dmp; 0
CF���������
4pR
p P

n0e; ne; n0h; nh; l

�CN 0CN

�fdn0
h
; nh
hn0e; ljFnp; lp jne; li ÿ dn0e; ne

hn0h; ljFnp; lp jnh; lig : �30�
Hence, the vibrational modes are restricted to lp � 0 and, as in the free electron±hole

pair model [1], none of the higher order lp vibrons contribute to the Raman cross sec-
tion. The Coulomb interaction mixes differently electron states and hole states (because
of the different masses). This leads to Raman scattering even in the case of infinite
electron and hole barriers. Photon wave vector k � 0 create or annihilate EHP's in the
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same spatial points re � rh � r. This leads to correlated EHP's with total angular mo-
mentum L � 0. Therefore, the quantum number lp for the participating vibron in the
first order Raman process necessarily has to be zero. The following selection rules are
thus obtained

DN 6� 0 ; L � 0 ; M � 0
Dnp 6� 0 ; lp � 0 ; and mp � 0 :

�31�

In this case the function Fnp; 0 is reduced to

Fnp; 0 �
����
R
p

mp

j0 mp

r

R

� �
ÿ j0 �mp�

h i
; r � R �32�

with eigenfrequencies

w2
p � w2

L ÿ b2
L

mp

R

� �2

: �33�

The values of mp are obtained by solving the equation tan m � m and bL is a phenomen-
ological parameter describing the bulk LO-phonon dispersion.

Finally, the Raman cross section for the Fr�ohlich interaction contribution in a spheri-
cal quantum dot can be written as

@2s

@W @ws
� S0

P
np

jMFI j2 Gp=p

��hwl ÿ �hws ÿ �hwp�np; 0��2 � G2
p

; �34�

where the delta function in Eq. (2) has been replaced by a Lorentzian in order to take
into account the vibron linewidth Gp. The coefficient S0 is equal to

S0 � e

m0

� �4 2P 2ws

3c2wl

� �2
hs

hl

�hC2
F

4pR
; �35�

with P � hXj Px jSi [6],

MFI �
P
N;N 0

fNhN; 0j hEÿP jN 0; 0i fN 0
��hws ÿ EN 0 � iGN 0 � ��hwl ÿ EN � iGN� ; �36�

and the dimensionless exciton±lattice interaction hEÿP HEÿP � CF���������
4pR
p hEÿP

� �
has

been introduced.
As a limiting case, when Coulomb electron±hole correlation is neglected it follows

from Eqs. (21) and (28) that in the infinite barrier approach the Fr�ohlich contribution
to the Raman cross section vanishes.

3. Numerical Evaluation and Discussion
of the Obtained Results

Equation (20) is solved by a standard numerical method. Taking a finite number N of
terms in the sum of (20), the energies are numerically calculated while the corresponding
eigenvectors give the coefficients C�a�. It should be pointed out that in our matrix
diagonalization scheme we have rearranged the basis functions Fa�re; rh�,
a : �ne; le; me; nh; lh; mh� by increasing energy: Fi�re; rh�, i � 1; 2; . . . . Then, we replace
the series in (18) by a sum from F1 to FN0

, with L and M fixed. This procedure is
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repeated with a larger N0 until satisfactory stability is obtained for the energy eigenva-
lues we are interested in. Within this approach we diagonalized matrices much smaller
than using ``conventional procedures'' [4]. In fact, the same results of Ref. [4] are ob-
tained for the low exciton levels in the range 0 < R=aB < 5 with 40� 40 matrices.

In Fig. 1 we show the L � 0 exciton energy of the first levels as a function of QD
radius for CdS nanocrystal embedded in glass and for a GaAs dot in an AlAs matrix.
The parameters used in our calculations are listed in Table 1. The energy levels and
sphere radii are given in units of ER and aB, respectively. In this dimensionless scale the
low energy level is nearly independent of the ratio of electron and hole masses [15]. In
Fig. 1a and 1b quasi-degenerate levels are shown by dashed lines.

In order to take into account the finite band off-set of the barriers for the electrons
and holes (essential for Raman scattering to occur) while keeping the mathematical sim-
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Fig.1. Exciton energy levels so-
lution of equ. (13) for L � 0 in
units of the exciton Rydberg
ER as a function of the dimen-
sionless radius R=aB (aB the
effective Bohr radius). a) A
CdS sphere embedded in glass;
b) GaAs sphere in a matrix of
AlAs. Dashed lines represent
quasi-degenerate levels



plicity of the infinite confinement approach, we introduce an effective quantum dot ra-
dius Ref in such a way that the EHP energy (15) coincides with that for a finite barrier
(see Eq. (8) of Ref. [1]). Thus, in the radial part of wave functions (17) and in the
uncorrelated EHP energies (15) we replaced R by Ref . We fitted the functional depend-
ence of Ref on R and found Ref � 5:321� 1:066Rÿ 0:001R2, 5 �A < R < 35 �A for
CdS microcrystallites embedded in glass and Ref � 11:259� 0:971R� 0:0002R2,
20 �A < R < 120 �A for GaAs QD in a matrix of AlAs using the barriers of Table I. Note
that the vibronic states are characterized by the QD radius (not Ref ) where the mode
amplitude at the surface is zero [1]. We have calculated the one-vibron Raman scatter-
ing cross sections and scattering intensities according to Eqs. (1) and (3) for CdS and
GaAs quantum dots. According to the selection rules derived in Section 2.3, we have
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T a b l e 1

Values of the material parameters used in the numerical calculations

parameter CdS glass GaAs AlAs

Eg (eV) 2.6 [16] 7 [16] 1.5177 [15] 3.131 [15]
wL (cmÿ1) 305 [17] 293.6 [18]
bL (m/s) 5:04� 103 [1] 3:2� 103 [18]
me=m0 0.18 [17] 1 [1] 0.0665 [15] 0.124 [15]
mh=m0 0.51 [17] 1 [1] 0.45 [15] 0.5 [15]
V e

0 (eV) 2.5 [4] 0.968a

V h
0 (eV) 1.9 [4] 0.6453a

e0 7.8b 12.53 [15]

a Calculated assuming band offsets of 60 and 40% of the gap differences for the conduc-
tion and valence band, respectively.

b Calculated to fit the ground state energy of the bulk exciton given in Ref. [19]

T a b l e 2

Values of oscillator strength, dimensionless exciton±vibron matrix element hN j h�np�
EÿP jNi

for different np vibronic modes, and weight coefficient C�a� in the exciton wavefunction
(7) contributing to the Raman cross section of Fig. 2

excitonic
state

EN ÿ Eg oscillator
strength

np d
�np�
N � hN j h�np�

EÿP jNi jC�ne; l; nh; l�j2

R � 20 �A
1 ÿ0.009 ne � 1; nh � 1; l � 1

1 0.533 0.806 2 ÿ0.0059 0.989
3 ÿ0.00045

Ref � 26:1 �A
1 ÿ0.012 ne � 1; nh � 1; l � 1

1 0.278 0.749 2 ÿ0.00161 0.98
3 ÿ0.00018
1 ÿ0.0196 ne � 1; nh � 2; l � 0

2 0.605 0.0168 2 ÿ0.074 0.97
3 ÿ0.003
1 ÿ0.00015 ne � 1; nh � 1; l � 1

3 0.710 2.695 2 ÿ0.00149 0.958
3 ÿ0.00009



summed in the matrix element MFI of Eq. (3), the first 20 excitonic levels with L � 0
for different np vibronic modes and lp � 0. A lifetime broadening of 5 meV for all exci-
ton transitions involved and a vibron half width of 2 cmÿ1 were used in the calculation.
The lp � 0 vibronic frequencies, of a purely longitudinal character, were obtained with
Eq. (33) using the parameters given in Table 1.

In Fig. 2 we show the Raman cross section for a CdS microcrystallite of 20 �A radius as
a function of the Raman shift for laser energies on incoming resonance with different
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Fig. 2. a) Raman cross section vs. Raman shift for a 20 �A radius CdS sphere embedded in glass at
a laser energy in resonance with the N � 1 exciton state. Solid line: modeling the finite potential
band offset (see text), dashed line: infinite potential barrier. b) Raman spectra at different laser
energies �hwl. The two peaks correspond to lp � 0 vibrons (np � 1 and np � 2)



exciton states. The spectrum for �hwl � 3:133 eV corresponds to an incoming resonance
with the lowest energy state assuming completely confined excitons (dashed lines in
Fig. 2a). There are contributions due to the lp � 0, np � 1 mode at 299 cmÿ1 and one
more peak at 287 cmÿ1 due to np � 2 modes.

Modeling the finite potential barrier of the microcrystallite electrons and holes as ex-
plained above, we find an effective confinement radius of 26.1 �A for the EHP energy
(15) and basis wave functions (17). The solid line in Fig. 2a corresponds to the Raman
cross section calculated using R � 26:1 �A. The laser energy is in resonance with the
corresponding N � 1 ground state, i.e. �hwl � 2:878 eV. Firstly, we note that the np � 1
vibron is stronger in the case of ``finite'' confinement. Second, in the infinite barrier case
the peak associated to the np � 2 vibron is enhanced to be of the same order as np � 1
vibron. In order to understand these feature we report in Table 2 the values of oscillator
strength and dimensionless hN j h�np�

EÿP jNi exciton±vibron matrix elements for several np

vibron modes when the wavefunctions (17) are taken either with R � 20 �A or with
R � Ref � 26:1 �A. The principal contribution to the N � 1 matrix element comes from
the ne � nh � 1 and l � 1 EHP states. Comparing the absolute values of the exciton±
lattice matrix elements in Table 2 we conclude that jd�1�1 j for Ref is 33% higher than that
with R � 20 �A. Similar analysis can be done for lp � 0 np � 2 mode, thus explaining the

relative intensities respect to np � 1 (d
�2�
1 =d

�1�
1 � 0:13 using Ref and d

�2�
1 =d

�1�
1 � 0:65 eval-

uated for the QD radius). The electron±hole decompensation is greater for the effective
quantum dot which simulates the finite barrier potential.

In Fig. 2b we show the Raman cross section for the incoming resonances with the
N � 1; 2 and 3 exciton levels. The latter two spectra have been multiplied by a factor of
5. The spectrum for �hwl � 3:205 eV (N � 2) is much weaker because the exciton state
jN � 2; 0; 0i is mostly composed of the pure electron and hole states with ne � 1,
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Fig. 3. Raman intensity as a function of laser energy for the lp � 0, np � 1 mode of a 20 �A radius
CdS sphere embedded in glass. The different exciton contributions are shown in the figure (N � 1,
2 and 3 excitonic states)
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le � 0, nh � 2, lh � 0 and its optical strength is about 2% that of the first state. On the
other hand, the resonance with the N � 3 level presents an optical strength 3.6 times larger
than that of the first level, nevertheless, the matrix element h3; 0; 0jHEÿP j3; 0; 0i is
quite small, and the relative intensities of the np � 1; 2 vibron peaks must be deter-
mined by other virtual transitions.

Fig. 3 displays the integrated Raman intensity obtained according to Eq. (4) for the
lp � 0, np � 1 mode. The peaks corresponds to the incoming and outgoing resonances
with the first, second and third levels. To the right of the breakpoint, the Raman inten-
sity has been also multiplied by 5. The ground state exciton presents an outgoing reso-
nance stronger than the incoming one, while for the excited states N � 2 and 3 the
opposite is observed. This can be explained by interference effects with other virtual
exciton transitions occurring in the respective resonance regions.

The Raman spectra for a GaAs dot of R � 25 �A in a AlAs matrix are shown in Fig. 4.
The calculated effective radius is equal to 35.5 �A and laser energies are chosen in incom-
ing resonances with the N � 1, 2 and 3 exciton states. The �hwl � 2:123 eV and
�hwl � 2:228 eV spectra have been multiplied by 120 and 2 and shifted 0.5 and 1.5 units
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Fig. 4. Raman spectra of a 25 �A
radius GaAs sphere in a matrix of
AlAs at different laser energies.
Solid line: �hwl in resonance with
N � 1 excitonic state, dashed line:
�hwl in resonance with N � 2 state
(multiplied by a factor of 120)
and dashed-dotted line: �hwl in re-
sonance with N � 3 excitonic le-
vel (multiplied by a factor of 2)

Fig. 5. Raman profile for the lp � 0,
np � 1 vibron in a 25 �A radius GaAs
sphere in a matrix of AlAs. The different
exciton contributions are shown in the
figure (N � 1, 2, and 3 excitonic states).
The N � 2 level contribution has been
multiplied by a factor of 100



upward, respectively. The resonance with N � 2 has a smaller cross section due to the
small optical oscillator strength. Beside the principal structure at 292 cmÿ1 (np � 1) the
�hwl � 2:228 eV spectra clearly shows two more peaks at 289 cmÿ1 (np � 2) and 284 cmÿ1

(np � 3) and small shoulders at 278 cmÿ1 and 269 cmÿ1 due to np � 4, 5, respectively.
The matrix element MFI for N � 3 with np � 1 intrasubband transition is nearly 35% of
that for the N � 1, np � 1 transition. Moreover, the N � 3 exciton is about 10 meV
below (see Fig. 1) N � 4 counterpart and this quasi degeneracy in energy implies an
additional increase of the Raman cross section.

In Fig. 5 the integrated Raman intensity for the np � 1 vibrons in the GaAs nanocrys-
tal of 25 �A radius is presented. The resonances for the N � 1 and 3 levels are clearly
seen where the outgoing peaks, in both cases, are stronger than the incoming resonances.
The structure around the N � 2 exciton is very weak (a factor 100 times smaller) reflect-
ing the weak oscillator strength and exciton± lattice matrix element.

4. Conclusions

We have calculated the first order Raman cross section and resonance profile for optical
vibrons in semiconductor quantum dots and microcrystals induced by Fr�ohlich interac-
tion including the electron±hole correlation in the envelope function approximation. We
have considered the exciton±vibron Fr�ohlich-type Hamiltonian within a continuum mod-
el for the vibron which incorporates the elastic and dielectric properties of the dot and
the surrounding medium. In the dipole approximation and using a one-band effective
mass model for the c and v bands, the L � 0 and lp � 0 selection rules for the exciton±
lattice transitions are obtained for spherical QD. We present the calculated energy of
the allowed L � 0 excitonic states as a function of quantum dot radius for GaAs and
CdS. The finite band offset for electrons and holes has been modeled by introducing an
effective dot that corrects the EHP energy in an infinite potential. The finite band offset
has a profound influence on the Raman cross sections. The main characteristic of the
Raman profile is that the outgoing peak for the N � 1 lower exciton energy is higher
than for the incoming one. This follows from the zero-dimensional character of excitons
in small radius QDs (non interference between different levels). The excited states may
present stronger intensity peaks at incoming or outgoing resonances depending on the
QD radius, exciton oscillator strength and exciton±vibron matrix element.
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