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We report a theoretical study of the first-order resonant Raman scattering by optical phonons in self-
assembled quantum dots (SAQDs). We consider the SAQD as a cylindrical disk with elliptical cross
section to simulate shape and confinement anisotropies obtained during the SAQD growth. The lat-
eral confinement anisotropy is modelled by harmonic potentials with two different frequencies. In an
envelope function Hamiltonian approach and using matrix diagonalization techniques, the exciton
wave function and energy states are calculated as function of SAQD parameters. Raman scattering
polarizability is obtained for a Frohlich coupling between exciton and confined-phonons. We analyze
how the Raman scattering technique could give information on confinement anisotropy effects and
SAQDs geometry. Here, characteristic results for SAQDs of CdSe dots in ZnSe are presented.

1. Introduction

Last few years have seen an explosion in research activities on self-assembled quantum
dots (SAQDs) [1]. These structures provide extreme quantum confinement of charge
carriers given their nanometer dimensions. Either by photoproduction, doping, or tun-
neling in a capacitance arrangement [2], electrons and/or holes in these structures ex-
perience the strong local potential provided by structural constraints, as well as by long-
ranged strain fields. The effective confinement potential then includes the combined
effect of structural as well as lattice and strain anisotropies and may have in general
quite a complicated symmetry. Since several growth techniques are employed to fabri-
cate SAQDs, the resulting geometries and sample configurations yield a variety of dif-
ferent structures [1]. Structural geometries vary from faceted pyramids [3] to smoother
lenticular shapes [1], depending critically on growth and local environment conditions.
Photoluminescence (PL) and PL excitation (PLE) experiments are routinely used to
provide information on the overall size of the resulting SAQDs, since due to the carrier
confinement there is a strong correlation between decreasing sizes and the larger blue-
shifting of the PL signal. Mapping of the quantum dot shape is also accomplished by a
variety of microscopy techniques, from TEM to AFM, but quantitative and detailed
information on the effective potential in a given structure is difficult to obtain.

In this paper, we present a theoretical treatment of the resonant Raman scattering by
confined phonons in SAQDs. By analysis of the elements entering these experiments,
namely the effects of the effective potential on excitonic states, the general case of LO-
phonon dispersion for modes confined in the dot, and a detailed calculation of the
various matrix elements involved in the Frohlich coupling, we provide the basis for
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quantitative analysis of Raman experiments in these systems. For concreteness, we fo-
cus our attention here on a model of asymmetric dot confinement, where the effective
potential is assumed to be that of a cylindrical pill-box with elliptical cross section, and
we study the effects of this non-circular geometry on the Raman scattering process
efficiency. We find that the asymmetry indeed has strong and clear signatures in the
light scattering. Moreover, detailed analysis of the Raman coupling could give informa-
tion on the effective mass of the carriers.

2. Resonant Raman Scattering in Quantum Disks

The resonant Raman polarizability is related to the microscopic amplitude through the
expression [4]
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where 7 is the refractive index, w)(ws) is the incoming(outgoing) light frequency, ug
is the relative displacement, and V. is the volume of the primitive cell. The kets |u;)
and |u,) refer to the excitonic intermediate states in the QD, E, and I', are their re-
spective energies and lifetime broadenings, and Hg_r and Hg_p are the exciton—
radiation and the exciton-lattice interaction Hamiltonians, respectively. The exciton—
radiation coupling constant in the dipole approximation is proportional to [5]
JWu(re =xo,1n =10) d&*ry, where W, (re,1y) is the exciton wave function. In the follow-
ing we consider the QD grown along the [001] direction denoted by z, and its geometry
modeled as a quantum disk. It is assumed that the quantum disk lengths L., L, are
larger than L, and the LO-phonons are confined along the z-direction with eigenfre-
quencies @2 = w? — fi(na/L;)*n=1,2,... [7], where wp and 8, describe the bulk
LO-phonon dispersion. In nanostructure semiconductors, such as quantum wells and
QDs and in the backscattering configuration z(x,x) z, with x parallel to [100] direction,
the Frohlich mechanism becomes the stronger coupling for light frequencies in re-
sonance with the excitonic states [6]. The exciton-LO-phonon coupling constant in
the dipole approximation for the in-plane phonon wavevector is given by [7]
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and Cp is the Frohlich coupling constant. Introducing the above expressions into (1),
the Raman polarizability for the Frohlich-like interaction takes the form
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For quasi-flat quantum disks, where the condition Ly, L, > L, is fulfilled, the anisotro-
py effects along the growth direction can be disregarded. The confining potential in the
dot can be assumed, in first approximation, constant. Nevertheless, the asymmetric con-
finement geometry needs to be taken into account. The excitonic intermediate states
are confined into a harmonic potential in the XY plane with frequencies w, and w, and
axes ratio given by L,/L, = \/w,/w,, and a strong confinement regime along the z-axis
is assumed. Hence, the exciton problem in the envelope function approximation can be
described by a separable Hamiltonian in the XY plane and the Z-motion. The wave-
function is separable into a product of the in-plane wavefunction ¢y _y (R) ©,,(0) de-
scribed by the center-of-mass R and relative coordinate g, and the electron and hole
subband wavefunctions ¢, (z;) (i = e, h). The center-of mass function ¢y 5 corre-
sponds to a two-dimensional harmonic oscillator with quantum numbers N,, N, and the
m-th state of the relative exciton motion is described in Ref. [8] and given by
On(@) = > an,n,Pn, (X) @n, (v). The energies E,, and eigenfunctions &,, are obtained

by numerical diagonalization techniques from the Hamiltonian describing the 2D exci-
ton relative motion [8]. The total exciton energy is given by FE(m,N,,Ny,nc, nn)
= (N +3) hox + (Ny +3) hoy + E, + Ey + E,, + Ep,. As the excitonic Bohr radius is
much larger than the electron—hole pair distance mean value along the Z-direc-
tion, the three-dimensionality of the Coulomb interaction effect on the exciton
binding energy can be treated by perturbation theory of the Hamiltonian
H, = —€*/c|re — 1| + €?/¢ |0, — 04 (0 being the in-plane component of r) [9]. The Ra-
man polarizability ar for the n-th phonon state is obtained by introducing the calcu-
lated matrix elements into Eq. (3). Since the only allowed optical transitions between
electron and hole subbands have quantum numbers n. — n, equal to an even number,
it follows that the Frohlich interaction is allowed only for phonon states with even
quantum number (n = 2,4,...).

3. Results and Discussion

For a SAQD with circular geometry (wx=w,, or L =L,=0L,) the states with
N+ N, = N are all degenerate and according to Eq. (3) the Raman feature will pre-
sent a sole incoming (or outgoing) resonant peak at laser energy equal to these exci-
tonic transitions, that is Ziw;(hws) = E(m, Ny, N — Ny, ne,ny). In the case one is dealing
with elliptical cross sections, the degeneracy due to the circular symmetry is broken and
a set of new incoming and outgoing resonances will appear in the Raman scattering
efficiency. The different excitonic transitions of the SAQD can be tuned by the incom-
ing light and their shift in energetic separation give a direct characterization of the
quantum disk geometry. As example, we use parameters to describe CdSe SAQD in
ZnSe. These islands are grown by molecular beam epitaxy [10,11] or atomic layer epi-
taxy [11]. In correspondence with bulk phonon data for CdSe (wp =209 cm~!) and
ZnSe (wp =250 cm™!), the CdSe phonons must be confined in the dot. Nevertheless,
experimental observation in quantum wells does not present evidence that phonons are
confined. The growth conditions and the lattice mismatch stress effect could explain these
experimental facts. Due to lack of knowledge on what happens in CdSe/ZnSe quantum
disks we prefer to follow the confined model above presented to show the anisotropic
geometric influence on Raman scattering. Fig. 1 shows the |a§:")|2 Raman polarizability as
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Fig. 1. Raman polarizability |a¥7)\2,
given by Eq. (3) as a function of la-
ser energy for CdSe dots in ZnSe.
The figures correspond to the n =2
LO-optical confined mode of CdSe.
a) Symmetric case where L, =2 nm
and L,=L,=4 nm. b) Asym-
metric QD with L, =2 nm,
L=,/LiL,=4nmand 2L, =1L,
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a function of the laser energy for a CdSe SAQD in ZnSe. The values used for the
CdSe(ZnSe) calculations are me = 0.112(0.16) my, myp, = 1.2(0.38) mg, myyy, = 0.45my,
E, =1.84(2.82) eV, A. = 0.4E,, ¢ =93, fi. =1576 x 1075, oy =209.0cm™ L. In the
figure, all excitonic transitions correspond to n. = np =1 subbands and the incoming
and outgoing resonance peaks are labeled by I(m,N,,N,) and O(m, Ny, N,), respec-
tively. Fig. 1a presents \ag’)|2 for SAQDs with circular cross section, while the non-sym-
metric case is shown in Fig. 1b. In both cases L; =2 nm and L = \/L,L, = 4 nm but in
Fig. 1b 2L, = L,. From the figures it is clearly seen that degeneracy present in the
circular symmetry case is broken for the elliptical cross-section one, and additional fea-
tures appear in between the peaks that correspond to the first (m = 0) and second
(m =1) internal exciton motion states. The difference in energy between 1(0,0,0) and
1(0,0,2) in the Raman intensity spectrum of Fig.1b is proportional to fiw, or equiva-
lently to L;z. The same is achieved for the outgoing resonant peaks or similar features
of the Raman spectrum.

In summary, the resonant Raman scattering intensity for anisotropic QDs has been
calculated. The splittings of the excitonic center-of-mass quantum numbers observed in
the scattering intensity reflect the quantum dot geometry proving that the resonant Ra-
man technique is a suitable method to characterize the SAQDs. Direct comparison with
experimental data would yield important structural information.
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