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Abstract. Resonant Raman scattering in spherical semiconductor quantum dots is
theoretically investigated. The Fröhlich-like interaction between electronic states
and optical vibrations has been considered. The Raman profiles are studied for the
following intermediate electronic state models: (I) uncorrelated electron–hole pairs
in the strongly size-dependent quantized regime; (II) Wannier–Mott excitons in an
infinite potential well; (III) excitons in a finite confinement barrier. It is shown that
the finite confinement barrier height and the electron–hole correlation determine the
absolute values of the scattering intensities and substantially modify the Raman
lineshape, even in the strong confinement regime.

1. Introduction

During the last decade, technological developments have
made possible the fabrication of one- and zero-dimensional
nanostructures such as quantum wires and quantum dots
(QDs). The interest in these systems comes from their novel
optical and transport properties and has been stimulated by
the success of quantum wells in technology. The effect
of reduced dimensionality on the electronic excitations
and the related optical properties has been the subject of
intensive investigation and nowadays it is more or less
wellunderstood.

Semiconductor-doped glasses (SDGs) are particularly
useful to investigate the vibrational modes in quasi-
zero-dimensional systems, because the use of appropriate
thermal annealing techniques makes it possible to grow
semiconductor nanocrystallites with small enough radius
to show the effects of spatial confinement on the optical
vibrational modes. Raman spectroscopy is a valuable
tool to probe the active optical modes and also to
obtain information about the electronic system. In
addition, resonant Raman scattering (RRS) can be used
as a size selective technique [1], which could play an
important role on SDGs due to their broad dispersion
in microcrystallite sizes. Recently, the mechanism
and features of Raman scattering by semiconductor
nanocrystallites have been studied [2–5], showing the
effects of the reduced dimensionality on the Raman shift
and lineshape. A preliminary theory of first-order RRS

in spherical microcrystallites has been developed in [2]
and [6] on the basis of a continuum model for polar
optical vibrations. These models consider the electronic
intermediate states as uncorrelated electron–hole pair (EHP)
states, that is, in the strong size quantized regime
(model I). An extension to the above theories, considering
the electron–hole interaction effects, has been recently
presented [7] (model II). The calculations performed in
[7] are strictly valid for excitons completely confined
within dots. Raman scattering in the Fröhlich configuration
considerably depends on the differences between electron
and hole wavefunctions (electron–hole decompensation)
[8]. The theoretical values of the Raman cross-section and
lineshape should be modified by the electron–hole model
and the confinement potential used in the entire calculation.
Hence, in the framework of a free EHP model with infinite
barriers the same wavefunctions for electrons and holes are
obtained and null contribution of the Fröhlich mechanism
to the Raman cross-section is achieved. The scattering
efficiencies following models I and II considerably differ
when absolute values are calculated, even for QDs with
radii smaller than the exciton Bohr radius. In model I the
finite confinement barriers are considered but regardless
of excitonic effects. Model II includes the electron–hole
correlation in an infinite barrier, but the chosen potential
diminishes the electron–hole decompensation occurring
through the finite band offsets potential. In [7] on the
lines of model II an effective radius Ref was introduced
in order to take into account the penetration of the exciton
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wavefunction into the adjacent medium. This procedure
allows, in some way, the RRS calculations in real systems
using the mathematical simplicity of the infinite-barrier
basis functions. We will show that within the above
approach accurate exciton ground-state energies can be
achieved but this approach underestimates the calculated
Raman absolute values. It is well established that a
reliable Raman scattering theory becomes necessary in
order to interpret RRS absolute values in semiconductors
[9]. The purpose of the present paper is to clarify the
electron–hole decompensation effect on the absolute values
of scattering intensities and Raman lineshapes, taking into
account uncorrelated and correlated electron–hole theories
and using different confinement potential models.

The paper is organized as follows. In section 2 we
provide the theoretical basis needed to obtain the Raman
cross-section where the electronic intermediate states are
excitons in a finite spherical potential box (model III).
Theories I and II are derived as proper limits from the more
general model III. We also compare the Raman intensity
values for CdS QDs embedded in a glass matrix, obtained
along the lines of the above-described theoretical models.
In section 3 we present the conclusions of the present work.

2. Results and discussion

The Raman cross-section ∂2σ/∂#∂ωs of a dot of radius R
can be expressed as [7]

∂2σ

∂#∂ωs

= S0

×
∑

np

∣∣∣∣∣
∑

N,N ′

fN 〈N |h(np)

E−P |N ′〉fN ′

(h̄ωs −EN ′(R)+i%N ′)(h̄ωl−EN(R)+i%N)

∣∣∣∣∣

2

×
%np

/π

(h̄ωl − h̄ωs − h̄ωnp
(R))2 + %2np

. (1)

Here, h̄ωl (h̄ωs) is the incoming (outgoing) photon energy,
EN (%N ) is the energy (broadening) of the intermediate
L = 0 electronic state |N〉 (L being the quantum number
of the total electronic angular momentum squared), fN their
optical strengths, 〈N |h(np)

E−P |N ′〉 is the matrix element of the
electron–Fröhlich-type lattice interaction (in dimensionless
units [7]) and np is the vibron [10] quantum number with
angular momentum lp = 0 and frequency ωnp

. S0 is a
constant which depends on the semiconductor parameters
and the embedding medium [7].

The exciton wavefunction '(re, rh) is obtained by the
expansion

'N,L,M(re, rh) =
∑

α={ne,nh,le,lh}
CN,L,M(α))α(re, rh) (2)

where the basis functions )α(re, rh) are eigenfunctions of
the total angular momentum squared L̂2, its z projection
L̂z and the Hamiltonian of the free EHP in the dot. The
functions )α(re, rh) are constructed from the dot electron
and hole wavefunctions (φne,le,me

(re) and φnh,lh,mh
(rh)),

through the relation

)α(re, rh) =
∑

me,mh

(lelhmemh|LM)φne,le,me
(re)φnh,lh,mh

(rh)

(3)

(lelhmemh|LM) being the well known Clebsch–Gordan
coefficients.

The coefficients CN,L,M(α) and the eigenenergy EN

are obtained from numerical diagonalization of the exciton
Hamiltonian in a spherical potential well, using the basis
defined by equation (3) [11]. If the uncorrelated theory
(model I) is considered, for every eigenstate there is only
one non-zero coefficient CN,L,M(α) in the expansion (2).
This approach leads to the same results as the formalism
of [6]. On the other hand, models II and III differ upon
the radial parts of the electronic wavefunctions φne,le,me

(re)

and φnh,lh,mh
(rh), which depend on the chosen confinement

potential.
The resonance condition with a particular electronic

level N is given by the equations h̄ωs = EN(R) (outgoing
resonance) or h̄ωl = EN(R) (incoming resonance). In
the dipole approximation only excitons with L = 0 are
created or annihilated, corresponding to le = lh interband
transitions in the free EHP model. If the valence-band
mixing is neglected, only lp = 0 vibrons contribute to the
Raman scattering.

The calculation of the matrix elements of equation (1)
has been performed in [7] for the case of totally confined
excitons, while the strong size quantized regime (non-
exciton effects) has been developed in [6]. The parameters
used in our calculations correspond to a CdS QD of
radius 20 Å [7]. This means that the dot is in the strong
confinement regime. In this regime the Coulomb attraction
shifts the EHP energies to lower values and small changes
in the wavefunctions are expected.

Figure 1 shows the electron and hole density of
probability for the three lower L = 0 excitonic eigenstates
as functions of r , the distance to the dot centre. The density
of probability in the case of the uncorrelated EHP model
(I) is shown by a dashed curve. For the N = 1, L = 0
excitonic state the effect of the correlation is to push both
the electron and the hole to the dot centre. As can be
seen, for the system under consideration (CdS QD of radius
20 Å) the effect of the finite confinement on the electron–
hole decompensation is larger than that of the electron–
hole interaction. As we shall see, if the former effect
is neglected considerable changes in the predicted Raman
cross-section absolute values are obtained. In figure 2(a) we
compare the calculated Raman cross-section for incoming
light in resonance with the N = 1 excitonic state following
models I, II and III. The incoming resonances happen at
h̄ωl = 2.870 eV in the finite-barrier excitonic model III
(solid curve), at h̄ωl = 3.014 eV in the uncorrelated
EHP model I (dashed curve) and at h̄ωl = 2.878 eV for
the excitonic model II (dot-dashed curve), assuming an
effective radius Ref = 26 Å to simulate the finite-barrier
height. It can be seen that accurate N = 1 exciton energy
can be obtained following the formalism of model II. The
N = 1 excitonic state, as can be seen in table 1(a), is
mainly composed of EHP states with quantum numbers
ne = nh = 1, le = lh = 0 with a large oscillator strength
|fN |2, giving the main contribution to the cross-section in
the resonance condition. The lineshape is almost the same
in the three models. The difference between those models
lies in the absolute values of the cross-section, which is
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Figure 1. Density of probability function for the hole
(curve A) 4πr2

∫
|'N (re, r)|2 d3re and for the electron

(curve B) 4πr2
∫

|'N (r, rh)|2 d3rh , for the states N = 1, 2, 3
and L = 0 considering finite band offsets. The solid curves
correspond to calculations using the excitonic model and
the dashed curves, using the free electron–hole pair model.

smaller in model II. It is clear that the dominant effect on
absolute values comes from: (a) the values of the oscillator
strength [12]; (b) the EHP wavefunctions decompensation
produced by the finite depth of the spherical well. It can be
seen from figure 1 that the electron–hole decompensation
for the first level is slightly larger in model III than the
free EHP theory (I), something that is reflected in the
values of the exciton–vibron matrix elements reported in
table 1. In the case of excitons completely confined (II) the
exciton–vibron matrix elements 〈1|h(np)|1〉 are one order of
magnitude smaller than I and III (see [7]). However, we
must note that in the case of the electrons, the effective
mass in the glass matrix is five times larger than its value
inside the dot, causing an extremely large decompensation.
A similarly large effect can be achieved if one of the barrier
heights is too small.

Figure 2(b) shows the Raman spectrum in the case of
incoming resonance with theN = 2 exciton at h̄ωl = 3.439,
3.205 and 3.292 eV in models I, II and III respectively. In I,

Figure 2. Raman cross-section of a 20 Å CdS quantum
dot, calculated using different electronic models:
(I) uncorrelated EHP intermediate states (dashed curve);
(II) excitonic intermediate states in a spherical box with an
effective radius Ref = 26 Å (dot-dashed curve); (III) excitonic
intermediate states (solid curve). (a) At h̄ωl = 3.014, 2.878
and 2.870 eV for models I, II and III respectively (incoming
resonance with N = 1, L = 0 EHP); (b) at h̄ωl = 3.439,
3.205 and 3.292 eV for models I, II and III respectively
(incoming resonance with N = 2, L = 0 EHP); (c) at
h̄ωl = 3.479, 3.310 and 3.339 eV for models I, II and III
respectively (incoming resonance with N = 3, L = 0 EHP).

theN = 2 state is the free EHP with quantum numbers ne =
1, nh = 2, le = lh = 0 and it has a weak optical activity,
as can be seen from the corresponding oscillator strength
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Table 1. Values of the coefficients CN ,0,0, resonance energies EN (incoming) and EN + h̄ωp (outgoing), oscillator strength |fN |2

and dimensionless exciton-lattice matrix elements 〈N |h (np )

E−P |N ′〉 for different np vibronic modes contributing to the Raman
cross-section, calculated using the excitonic and the free electron–hole pair models with finite barriers and the parameters of
[7].

EN (eV)
N CN ,0,0(ne,nh , le, lh)2 (EN + h̄ωp) |fN |2 np 〈N |h (np )

E−P |N 〉 〈N |h (np )

E−P |N + 1〉

(a) Excitonic model
2.870 1 −9.5× 10−2 2.3× 10−1

1 C (1, 1, 0, 0)2 = 0.98 (2.908) 1.67 2 −8.4× 10−3 9.4× 10−2

3 −8.1× 10−5 −1.3× 10−3

C (1, 2, 0, 0)2 = 0.83 3.292 1 −1.1× 10−1 3.8× 10−3

2 C (1, 1, 1, 1)2 = 0.16 (3.329) 1.08 2 −1.4× 10−1 −6.2× 10−2

3 −5.0× 10−2 −1.8× 10−2

C (1, 2, 0, 0)2 = 0.16 3.339 1 −5.9× 10−2 −1.1× 10−1

3 C (1, 1, 1, 1)2 = 0.82 (3.376) 2.74 2 4.0× 10−3 4.2× 10−3

3 8.3× 10−3 2.1× 10−2

(b) Free electron–hole pair model
3.014 1 −8.6× 10−2 −2.6× 10−1

1 C (1, 1, 0, 0)2 = 1 (3.051) 0.96 2 −3.0× 10−3 −9.2× 10−2

3 −2.8× 10−4 −5.3× 10−3

3.439 1 −1.2× 10−1 0
2 C (1, 2, 0, 0)2 = 1 (3.476) 0.03 2 −1.7× 10−1 0

3 −5.0× 10−2 0
3.479 1 −7.0× 10−2 0

3 C (1, 1, 1, 1)2 = 1 (3.516) 2.87 2 2.6× 10−2 0
3 −1.9× 10−3 0

|fN |2 in table 1(b). Nevertheless, the excitonic effects
produced by the Coulomb interaction greatly enhance its
oscillator strength (see table 1(a)) and a strong incoming
resonance is obtained. It must be noted that even when the
matrix element 〈2|h(np)|2〉 is maximum for np = 2, the main
contribution to the cross-section in figure 2(b) corresponds
to np = 1, a fact that can be explained by interference
effects due to virtual transitions between N = 2 and
N = 3 excitonic levels. Figure 1(b) shows that electron–
hole decompensation is similar for I and III. Nevertheless a
completely confined exciton theory with an effective radius
gives matrix elements 〈2|h(np)|2〉 one order of magnitude
smaller than those reported in table 1.

Figure 2(c) shows the spectrum for the case of incoming
resonance with the N = 3 level, at h̄ωl = 3.479, 3.310 and
3.339 eV in models I, II and III, respectively. The results
of the theories considered here present great differences.
(a) Model II predicts a cross-section smaller than that for
the N = 1 incoming resonance (figure 2(a)), while I and
III predict larger cross-sections than those of figure 2(a).
(b) In model III, the peak associated with the np = 2
vibron becomes bigger than the np = 1 peak. In models
I and III, because the energy of the incoming resonance
h̄ωl = E3 is very close to the energy of the outgoing
resonance with the N = 2 excitonic state h̄ωs ' E2 + h̄ωp

(see table 1), a quasi-double-resonant condition takes place
in the scattering process. Hence, the Raman cross-section
values are strongly dependent on the matrix elements
〈3|h(np)|2〉, which are maximum for np = 2, explaining
why the np = 2 peak is greatly enhanced. Moreover, the
np = 1 contribution is dropped because of interference
effects between N = 2 and N = 3 excitonic transitions

mediated by the matrix elements 〈3|h(np)|3〉 and 〈3|h(np)|2〉.
Owing to symmetry, the matrix element 〈3|h(np)|2〉 vanishes
in the framework of the free EHP model and the quasi-
double-resonance effect is not observed in figure 2(c). We
have also calculated the spectrum in the outgoing resonance
with N = 3, using models I and III. In this case the double-
resonance condition is not fulfilled and the obtained cross-
section is similar in both models.

We have finally compared the integral Raman intensity
for the np = 1 vibron of a 20 Å CdS QD and it is shown
in figure 3 as a function of the incident photon energy.
We have used the same broadening of % = 5 meV for
all the excitonic levels. This plot takes up the effects
already presented in previous figures over the absolute
values of the Raman spectra. The red shift of the resonances
due to the attractive electron–hole interaction is shown.
Due to the small optical oscillator strength, the intensities
corresponding to the incoming and outgoing resonances
with the second EHP level in model I are insignificant
compared to those of the first and third levels. Model III
predicts stronger resonances for the N = 1 exciton than
model I, a fact explained by the enhancement of its
oscillator strength. For all models the N = 1 outgoing
resonance is stronger than the incoming one, but for the
N = 2 state the opposite is obtained. The above feature is
a general result of the Fröhlich-like interaction in a quantum
dot. The N = 2 excitonic state has an oscillator strength
equal to 1.08, a factor about 30 times larger than for the
free EHP (see table 1) and this is the cause of the strong
N = 2 incoming resonance seen in the plot. The outgoing
peak for the N = 3 level is smaller in model III than that
of the free EHP theory. This is explained by the reduction
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Figure 3. Raman intensity for a 20 Å CdS quantum dot, as
a function of the incident photon energy, according to
model III (solid curve) and I (dashed curve).

of the electron–hole decompensation observed in model III
(see figure 1(c)). The intensities calculated according to
model II are two orders of magnitude smaller than that of
the exciton in the finite-barrier models. This calculation is
not presented in figure 3.

3. Conclusions

We have studied the influence of excitonic and finite
confinement effects on the first-order Raman cross-
sections for longitudinal optical vibrons in nanospherical
semiconductor quantum dots. We have compared the
predictions of three models for the intermediate electronic
states: (I) uncorrelated electron–hole pairs with finite
dot confinement; (II) excitons completely confined in a
spherical box with an effective radius; (III) excitons in
a finite confinement barrier. The main conclusion of the
present work is that the Raman spectra and the resonance
profile absolute values for the Fröhlich-type-interaction
Hamiltonian in QDs should be predicted by a theory
that takes into consideration both the finite confinement

barrier height and electron–hole correlation effects. Even
in the strong quantum confinement regime, excitons and the
conduction- and valence-band offsets substantially modify
the features of the resonant Raman spectra, particularly in
the presence of quasi-double resonances.
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