
Las Palmeras Molecular Dynamics: Flexible and modular

Molecular Dynamics.
Sergio Davis1, Claudia Loyola2, Felipe Gonzalez2 & Joaqúın Peralta2.

Group of NanoMaterials, http://www.gnm.cl/
1 Royal Institute of Technology, KTH, Sweden.

2 Departamento de F́ısica, Facultad de Ciencias, Universidad de Chile.

jperaltac@gmail.com

Abstract

Las Palmeras Molecular Dynamics (LPMD) is a Molecular Dynamics (MD) code written from scratch in C++, as user-friendly, modular and multiplatform as possible. Some of its features are: it is an Open Source code, it works using
plugins, it reads simple and intuitive configuration files, and includes utility software to perform analysis, conversion, and visualization of MD simulations.

LPMD began in july 2007 and, after one month, we released the first version, 0.4.0. Today, the stable branch 0.5 in its latest version, 0.5.3, has a lot of new features compared to 0.4. Recently, 0.5 was closed to take on the next
big branch, 0.6, which will include features such as efficient methods for electrostatic interactions, and others, such as MPI support.

On the latest tests, LPMD has shown good agreement with other software, but longer simulation times; an issue which we hope to improve in future releases. More information about the current development of LPMD can be found
on http://www.gnm.cl/lpmd.

1. Introduction

Molecular Dynamics (MD) is a computational simulation technique used mainly in material simulations [1, 2](such
as crystalline or amorphous solids, liquids or gases). The MD method consider the atoms or molecules interacting
with a potential and obeying the Newton equations of motion, and the physical properties are computed from
averages over many atomic configurations at different time steps. It is important to note even when the number
of particles is very different from the one in a macroscopic solid, the physical properties (both structural and
dynamical) show a very good agreement with experiment.

One of the reasons for starting LPMD was the need to create special characteristics in MD, for example,“frozen”
atoms, fixed walls, change of parameters during the simulation itself, etc. Basically, to have absolute control over
the simulation. Many alternative software have similar approaches, but the inversion in learning-time or money
is usually high. LPMD has a core of a MD diagram, so the main API [3] developed by us can be used for the
different requirements. With this idea in mind, LPMD includes software to run MD, analyze output provided for
other simulation software or LPMD itself, convert between different file formats and visualize results.

2. LPMD and Associated Software.

2.1 LPMD

The LPMD main program includes all the tools needed for performing MD, based, in a general vision, on the
diagram shown in the figure 1(a)

(a) Typical diagram of a Molecular Dynamics Cycle. (b) Number of C++ code lines in lpmd.

Figure 1: Working method and code lines number of LPMD.

2.2 Analyzer, Converter and Visualizer

The 0.5 branch includes additional software to compute properties from previous simulations. The idea is to take
advantage of the API to develop software for analysis of simulations. The utility software included in branch 0.5
are:

• Analyzer: Analyzes molecular dynamics output files (from other software or LPMD itself).

• Converter: Converts between different MD file formats.

• Visualizer: Visualizes MD simulations. Used to make movies or just for nice presentations.

Most of the plugins developed for LPMD can be used in another applications. For example, figure 2(a) shows
an analysis out of a simulation performed using moldy. Figure 2(b) shows an atomic configuration using the
visualizer utility and the lpvisual plugin.

(a) Structure Factor, for GeO2.
(b) lpmd-visualizer. Argon cell simulation.

Figure 2: Other characteristics.

3. Simulations

Figure 3(b) shows a typ-
ical MD simulation of a
high velocity impact, made
with lpmd, by shooting a
projectile with fixed veloc-
ity. This property is very
easy to set in LPMD.

(a) before (b) after

Figure 3: High Velocity Impact.

Figure 4(b) shows a simulation of a shockwave [4] induced by a rigid piston moving during a short period of time
inside a molecular Argon gas. After its initial movement, the piston is stopped, letting the wave move forward.

(a) (b)

Figure 4: Shock Wave Simulation.

4. Parallelization

Attempts of parallelizing LPMD started with the OpenMP model, so for now it only works for shared memory
machines. Despite this, we can already see a good decrease in calculation times for Ar simulations (from 108
atoms to 1296 atoms), as shown in figure 6 from 1 to 4 processors.

Figure 5: Simulation time versus number of processors for different cell sizes.

5. Plugins

Figure 6: Some examples of the plugins included with LPMD, and their place in the overall framework

6. Final Remarks and Future Work

†Remarks

• LPMD works on most computer hardware, adding new features does not imply a reinstallation of the full code.

• LPMD has a simple input format (minimal learning curve) based on loading and applying modules.

• LPMD is far from being just a simple MD code: it includes utilities such as analyzer, converter, visualizer, all
connected within the common MD framework. Using the LPMD API it is easy to make your own custom C++
and Python MD codes.

• It supports many formats for input and output files, unlike most molecular dynamics codes. Some plugins were
developed as interfaces between MD codes, for easy comparison and migration.

• As free software, we aim for frequent releases and bug fixes. During last year, a lot of new features has been
implemented, such as structural analysis, potentials and file formats.

† Future Work

•MPI support. We hope to achieve combined support for MPI and OpenMP.

• Ewald summation method, or some other faster ones for electrostatics interaction forces.

•Mixer. A new program for building complex material structures.

• Full integration between LPMD and the Python programming language.

• Attend requests from other users or colleagues.

References

[1] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids Oxford Science publications, (1987)

[2] D.C. Rapaport, The art of molecular dynamics simulation Cambridge, (2004).

[3] Application Programing Interface, is a set of functions, procedures, methods, classes or protocols that an operating system, library
or service provides to support requests made by computer programs.

[4] B. L. Holian and P. S. Lombdahl, Science 280, 2085 (1998).

7. Acknowledgements

This work is supported by grant Anillo Bicentenario-Chile ACT/24 “Computer Simulation Lab for nano-bio sys-
tems”. JP acknowledges MECESUP UCH008, CL acknowledges to CONICYT Doctoral fellowship grants.

XVI Simposio Chileno de F́ısica

