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We revisit the classical mechanics problem of a particle moving under the influence of a force that
depends on its velocity. Using the properties of the rotation matrix and associated operators, we
show that it is possible to find an exact analytical solution to a number of problems where the
differential equation of motion depends on the velocity. First, we apply our method to the well-
known cases of a particle under the influence of the Lorentz force and Coriolis force, providing the
complete analytical solution in each case for the motion of the particle in three dimensions. We
also show that the complete solution can be obtained when the centrifugal force is included,
showing the applicability to cases where there is simultaneous dependence on the position and
velocity. This method, which is not currently discussed in a typical course in elementary
mechanics, provides an alternative approach to the traditional methods that are used to solve these
types of problems. # 2021 Published under an exclusive license by American Association of Physics Teachers.
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I. INTRODUCTION

Many seemingly unrelated physical phenomena are
described by the same equations. Richard Feynman referred
to this fact as the underlying unity of nature and famously
observed “the same equations have the same solutions.”1

Such is the case of a particle experiencing a force that
depends on its velocity, for instance, in the well-known cases
of the Coriolis2–4 and Lorentz5,6 forces. There is an exact
analogy between these equations of motion and those that
govern the motion of a harmonic oscillator,7,8 spin sys-
tems,9,10 and others. Although the approaches used to inte-
grate these equations vary, this unity allows us to view them
as the same problem and, therefore, applies the same tech-
nique to solve them.

In general, problems addressed in introductory mechanics
courses deal with the motion of a particle in an external force
field that is either constant or depends only on the particle
position. Typical examples of this are the harmonic oscillator
and a particle in a constant gravitational or electric field.
However, interesting problems exist where the force depends
on the velocity of the particle, and such problems are not
generally addressed in great detail in textbooks. The deflec-
tion of the trajectory of falling object by the Coriolis force
and the motion of a charged particle in an electromagnetic
field are certainly the most common examples, but textbooks
often restrict this class of problems to particular cases where
analytical solutions can be found11–13 or rely on approxima-
tions to simplify the equations of motion. However, the exact
solution to a number of these problems can be found using
elemental properties of vectors and matrices without the
need for a special symmetry axis.

In this work, we provide a straightforward method to find
the exact solution to the equations of motion of a number of
dynamical systems, where the force acting on the particle

depends on the velocity. Although there are other solution
techniques, this one has some useful physical examples. We
will show that when the equation of motion can be written in
terms of linear operators acting on the velocity and position
vectors, and those operators can be expressed in terms of
projectors related to the rotation matrix, we can use a number
of interesting properties associated with these operators to
find the exact solution to the differential equations. As an
example, we apply this method to the case of a charged parti-
cle in an electromagnetic field, a falling object in the pres-
ence of a Coriolis and centrifugal forces, and a particle
subjected to a generalized lift force.

II. THEORETICAL FRAMEWORK

Consider a particle moving in three dimensions, subjected
to a force that depends on its instantaneous velocity, such as
the Lorentz force in electrodynamics,

m
dv

dt
¼ qðEþ v$HÞ: (1)

Throughout this manuscript, we use boldface text to denote
vector quantities. This equation of motion can be thought of
as a particular case of a more general family of equations of
the form

_rðtÞ ¼ vðtÞ; (2a)

_vðtÞ ¼ aþBvðtÞ; (2b)

which have to be solved for the initial conditions rð0Þ ¼ r0

and vð0Þ ¼ v0. Here, a is an acceleration vector that is
assumed to be constant in time while B is a 3$ 3 matrix of
real, constant elements. A formal solution to these equations
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of motion can be found by multiplying both sides of Eq. (2b)
by the integrating factor e&Bt, so that it can be rewritten as
d½e&BtvðtÞ(=dt ¼ e&Bta. Here, the exponential of a matrix is
defined by the Taylor series of this function, such that every
term of the series is well defined, as it is an integer power of
the matrix in the argument. Direct integration and a change
of variables in the integral leads to

vðtÞ ¼ etBv0 þ
ðt

0

enB dn
" #

a: (3)

Integrating again, we obtain

rðtÞ ¼ r0 þ
ðt

0

esB ds
" #

v0 þ
ðt

0

ðs

0

enB dn ds
" #

a; (4)

which represents the most general expression for the position
of the particle.

These integrals can be solved easily in terms of elemen-
tary functions if we are able find a manageable expression
for esB; but that will depend on the properties of the operator
B. Finding the exponential of a matrix usually involves
matrix diagonalization. Interestingly, diagonalizing the oper-
ator is not the only way of solving these types of problems.
In fact, it is instructive to realize that in this case, it is not
even necessary to obtain the eigenvalues explicitly. In Ref.
14, Gantmacher uses the characteristic polynomial in combi-
nation with the Cayley–Hamilton theorem, which can be
used to rewrite the exponential of the operator, leading to an
expression that is easier to handle for integration.

Here, we solve these integrals using a different method
from the aforementioned approaches. This method is based
on the properties of B and its relationships with the rotation
matrix, bypassing the diagonalization procedure. To solve
the integrals in Eq. (4), we will consider two different
approaches, based on whether B is invertible or not.

A. The operator B is invertible

If B&1 exists, then
Ð s

0 enB dn ¼ ðB&1ÞesB &B&1 and we
can easily integrate Eq. (4) to obtain

rðtÞ ¼ r0 & tB&1a&B&1ðI& etBÞðv0 þB&1aÞ; (5)

where I is the identity operator. This is an exact solution to
the motion of a particle of mass m subjected to a force
F ¼ mðaþBvÞ, in the case where the operator B&1 exists.
Notice that this solution is valid even if the operator B is not
diagonalizable.

B. The operator B is not invertible

In general, B has no inverse, so the evaluation of the inte-
grals in Eq. (4) is not as straightforward as in Subsection
II A. The most common approach to deal with these types of
problems is to try to diagonalize B in order to obtain a more
manageable expression for esB. This process14 requires
the calculation of eigenvalues and eigenvectors of
B ¼ PAP&1, where P is the matrix of eigenvectors and A
is a diagonal matrix with the eigenvalues of B as elements.
This leads to the expression esB ¼ esPAP&1 ¼ PesAP&1 that
is easier to integrate in Eq. (4). If B is not diagonalizable, it
can be written in terms of its Jordan normal form, J, such
that esB ¼ esPJP&1 ¼ PesJP&1 can still, in principle, be
integrated.

Here, we will tackle this problem from a different perspec-
tive. The idea behind our approach is that, when B can be
written in terms of certain projection operators or the rotation
matrix, we can take advantage of the multiple properties that
exist between these operators to simplify the term enB, such
that Eq. (4) can be solved by direct integration without the
need of expressing these matrices in a particular basis. This
approach represents an alternative method.

Let us study the properties of the spatial rotation operator
Rðn̂;uÞ, for which the transformation r0 ¼ Rðn̂;uÞr rotates
the vector r counterclockwise about the n̂ axis by an angle
u. Here, n̂ ¼ðn1; n2; n3Þ is a unit vector, and the angle u is in
the interval ½0; 2pÞ. This transformation can be written in
terms of Rodrigues’ rotation formula13

r0 ¼ Rðn̂;uÞr
¼ ðn̂)rÞn̂ þ n̂$ðr$ n̂Þ cos uþ ðn̂$rÞ sin u: (6)

Defining the operations

Nðn̂Þr * ðn̂ ) rÞn̂; (7a)

Pðn̂Þr * n̂$ðr$ n̂Þ; (7b)

Dðn̂Þr * r$ n̂; (7c)

where Nðn̂Þ is a projector parallel to n̂;Pðn̂Þ is a projector
perpendicular to n̂, and Dðn̂Þr is the dual of n̂, we have

Rðn̂;uÞ ¼Nðn̂Þ þ cos u Pðn̂Þ & sin u Dðn̂Þ: (8)

In Appendix A, we provide a derivation of this formula and
the explicit form of the matrices. It is easy to check that these
matrices commute with each other and are non-invertible
with the exception of Rðn̂;uÞ, whose inverse is Rðn̂;& uÞ.
They also satisfy the following properties (see Appendix A):

N2 ¼N; (9)

P2 ¼ P; (10)

D2 ¼ &P; (11)

D3 ¼ &D; (12)

PþN ¼ I; (13)

eaPðn̂Þ ¼Nðn̂Þ þ eaPðn̂Þ: (14)

It is worth noting that Nðn̂ÞPðn̂Þ ¼Nðn̂ÞDðn̂Þ ¼ 0 and
Pðn̂ÞDðn̂Þ ¼Dðn̂Þ, which leads to Nðn̂ÞRðn̂;uÞ ¼Nðn̂Þ
and Pðn̂ÞRðn̂;uÞ ¼ Rðn̂;uÞ &Nðn̂Þ. We can use these
properties to simplify the solutions presented later. Using the
equations above, we can deduce that Eq. (8) can be rewritten
as

Rðn̂;uÞ ¼ I& sin u Dðn̂Þ þ ð1& cos uÞD2ðn̂Þ; (15)

which, in turn, can be used to prove that

Rðn̂;uÞ ¼ e&uDðn̂Þ; (16)

or in other words, that D is the generator of R.
We can use these properties to solve the integrals in

Eq. (4), in particular, for the cases in which the force on the

1104 Am. J. Phys., Vol. 89, No. 12, December 2021 Y!a~nez et al. 1104



particle involves a cross product with the velocity (the opera-
tor B is proportional to D), that is, when B is skew-
symmetric; that is, its transpose equals its negative. In this
case, B ¼ aDðn̂Þ, and the integrands in Eq. (4) can be writ-
ten as

esB ¼ esaDðn̂Þ

¼Rðn̂;& saÞ
¼ Iþ sin ðsaÞDðn̂Þ þ ð1& cos ðsaÞÞD2ðn̂Þ: (17)

Written like this, integration over s is straightforward. In this
case, B is skew-symmetric because it can be written in terms
of D, which results in esB being the rotation matrix.
However, other cases where B is not skew-symmetric can be
addressed as well. For example, a force field proportional to
F ¼ ðv ) n̂Þn̂&v implies that B is proportional to P, and we
can use Eq. (14) to obtain a simple expression that allows us
to integrate Eq. (4). Something similar can be done for other
force fields, as long as B can be expressed as a linear combi-
nation of the operators N; P; D, and R.

In Sec. III, we will show examples where we can use these
properties to find the exact solution to Eq. (4) to describe the
trajectory of a particle that moves in force fields that depends
on its velocity.

III. APPLICATIONS

A. Lorentz force

Let us consider a particle of charge q that moves with a
velocity v in the presence of an electric field E and a mag-
netic field H, both constant in space and time. The equation
of motion is governed by the Lorentz force

m
dv

dt
¼ qðEþ v$HÞ: (18)

Defining H * jjHjj; ĥ*H=H, and x * qH=m, the two
terms of the acceleration in Eq. (2b) in this case become
a ¼ xE=H and B ¼ xDðĥÞ. The trajectory of the particle is
given by the solution to Eq. (4), which in this case reads

rðtÞ ¼ r0 þ
ðt

0

esxDðĥÞ ds
" #

v0

þx
H

ðt

0

ðs

0

enxDðĥÞ dn ds
" #

E: (19)

If we consider an infinitesimal displacement, the previous
equation reduces to

drðtÞ ¼ v0 þ
x
H

E t

" #
dt

þðv0 $ ĥÞxt dtþ ðE$ ĥÞx
2t2

2H
dt; (20)

where we have used the Taylor expansion esxDðĥÞ + 1
þsxDðĥÞ corresponding to an infinitesimal rotation about
the ĥ axis (see Eq. (16)). The motion of the particle can now
be understood as the sum of three contributions: a displace-
ment of a particle moving in a constant field, E, represented
by the first term in Eq. (20); a deviation from this trajectory
(second term) triggered by the magnetic field, which is

present only when the initial velocity is not null nor parallel
to the magnetic field, causing the trajectory to spiral; and an
accelerated motion (third term) in a direction perpendicular
to both fields. Thus, the rotation operator provides an intui-
tive and insightful way to understand the motion of the
particle.

To find the solution to Eq. (19), we have to consider that
DðĥÞ is not invertible; therefore, the solution in Eq. (5) does
not apply. However, using Eq. (16), it can be expressed as

rðtÞ ¼ r0 þ
ðt

0

Rðĥ;&xsÞ ds
" #

v0

þx
H

ðt

0

ðs

0

Rðĥ;&xnÞ dn ds
" #

E: (21)

In this equation, we can also appreciate how the trajectory is
built from successive rotations of the initial velocity vector
v0 and the electric field, E. We can solve it through direct
integration after introducing Eq. (17), leading to

rðtÞ ¼ r0 þ v0tþ xt2

2H
ðĥ ) EÞĥ

þ 1& cos ðxtÞ
x

" #
ðv0 $ ĥÞ & 1

H
ðE$ ĥÞ $ ĥ

" #

þ t& sin ðxtÞ
x

" #
ðv0 $ ĥÞ $ ĥ þ 1

H
ðE$ ĥÞ

" #
:

(22)

From this solution, it is straightforward to see that if v0;E,
and H are parallel, the particle will accelerate linearly along

the ĥ axis, governed by rðtÞ ¼ r0 þ v0tþ xEt2ĥ=2H. A
helical trajectory is generated when v0 is not parallel to H, as
shown in Fig. 1, which is skewed when an electric field is
present. If E is parallel to H, but not to v0, the particle
describes the well-known helical trajectory, given by rðtÞ

Fig. 1. (Color online) A charged particle in a magnetic field H follows the
magnetic field lines. To the left, in the absence of electric field, a particle
moves in helical trajectory, following the magnetic field lines. An additional
electric field E adds a drag to the trajectory. The color scale indicates for-
ward evolution in time, where blue represents the initial conditions.
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¼ r0 þ v0tþx&1ð1& cos ðxtÞÞðv0 $ ĥÞ þ ðt&x&1 sin ðxtÞÞ
ðv0 $ ĥÞ $ ĥ þ ðxEt2=2HÞĥ; that collapses to a circle of
radius R ¼ v0=x when E and v0 are perpendicular to H. This
is evident from the third term of Eq. (22), which vanishes for
the latter case, implying that the motion occurs in the plane

perpendicular to ĥ. We can find this result in textbooks, such
as Landau and Lifshitz,15 where the solution is obtained
using a different approach.

B. Coriolis force

Consider a point particle of mass m that falls close to the
surface of the Earth, such that the magnitude and direction of
the acceleration of gravity do not change. If we neglect the
air resistance and take into consideration the Coriolis force,
due to the rotation of the Earth, the resulting equation of
motion is

dv

dt
¼ g& 2X$ v; (23)

where X is the constant angular velocity of the Earth and g
is the acceleration of gravity on its surface. Examples of tra-
jectories under this force field are shown in Fig. 2. Defining
X * jjXjj and x̂ * X=X, we have a ¼ g and B ¼ 2XDðx̂Þ
in Eq. (2b). The trajectory of the object can be obtained by
direct analogy with the case of the particle under the Lorentz
force, because the operator B is again proportional to D. In
this case, an infinitesimal displacement in the trajectory,
given in Eq. (4), leads to

drðtÞ ¼ðv0þ g tÞdtþ 2Xðv0$ x̂Þ t dtþ g$ x̂ð ÞXt2 dt; (24)

where we again used the Taylor expansion e2XDðx̂Þ + 1
þ 2XDðx̂Þ, which corresponds to an infinitesimal rotation

Fig. 2. (Color online) As the Earth rotates with angular velocity X, an object moving to the east in the northern hemisphere is deflected to the south, due to the
presence of the Coriolis force. The opposite happens in the southern hemisphere. The color scale indicates forward evolution in time, where blue represents the
initial conditions. The dashed ellipses represent the origin of the trajectory. The dotted gray lines represent the projection of the trajectories on the Earth sur-
face, while the light gray lines represent the trajectories without the Coriolis force (non-rotating Earth). A particle on the northern hemisphere, shot towards
the north pole, can have a slight deflection to the west before deflecting to the east. Note: In order to allow the length of the trajectory to be non-negligible com-
pared to the size of the Earth, these trajectories were calculated for longer paths than can be solved with high accuracy using this method, in which the direction
of g is assumed to be constant.
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about the x̂ axis. As we saw in the case of a particle under
the Lorentz force, we have displacement of a particle moving
in a constant field, g, a deviation in the direction perpendicu-
lar to the initial velocity, and an accelerated motion (third
term) in the direction perpendicular to both g and x̂.
Replacing B ¼ 2XDðx̂Þ in Eq. (4) and replacing the rota-
tion operator from Eq. (17), we obtain

rðtÞ ¼r0þ v0tþ t2

2
gþ t2

2
ðg$ x̂Þ$ x̂

þ 1& cos ð2XtÞ
2X

" #
ðv0$ x̂Þ& 1

2X
ðg$ x̂Þ$ x̂

" #

þ t& sin ð2XtÞ
2X

" #
ðv0$ x̂Þ$ x̂þ 1

2X
ðg$ x̂Þ

" #
:

(25)

In textbooks, such as Mechanics by Landau and Lifshitz,
only an approximation to this solution is presented,11 where
terms of order X2 and higher are neglected to simplify the
equations. The approximation leads to the more familiar
expression for the position as a function of time

rðtÞ ¼ r0 þ v0tþ 1

2
gt2 & 1

3
X$ gt3 &X$ v0t2: (26)

The general solution we present in Eq. (25) can be found in
the textbook by Gantmacher,14 but the approach used to
derive it is not as straightforward as ours, since it involves
calculating the eigenvalues of B ¼ 2XDðx̂Þ in order to
obtain an expression for esxDðx̂Þ in terms of Dðx̂Þ to inte-
grate Eq. (4).

In Fig. 3, we show how the Coriolis force changes the tra-
jectory of a falling particle for different initial conditions at a
latitude k ¼ 30o. Using Eq. (25), we generate a set of trajec-
tories for angular speeds X ¼ XE and X ¼ 2XE, where XE is
the angular speed of the Earth, by changing the initial posi-
tion r0 and initial velocity v0 ¼ ðvx; vy; vzÞ. When vz , vx

and the north-south velocity vy¼ 0, the motion takes place
primarily on the x-z plane (as the normal parabolic motion
does). The y and z components of the Coriolis force are neg-
ligible in this case. The top four panels of Fig. 3 depict the
deviations from the parabolic trajectories, which are the nat-
ural paths that a projectile follows when the Coriolis force is
ignored (X¼ 0). When vz is large enough, the projectile per-
forms a loop in the air (third panel). This can result in the
particle falling in the place of departure (fourth panel), as the
Earth moves towards the flying particle. In the fifth panel, a
particle thrown upwards falls to the left of the departure
point. The bottom three panels show how a particle in free
fall is deflected to the right. To observe a few meters of devi-
ation due to the Coriolis force, the initial height must be a
few kilometers.

After observing the striking similarity between Eqs. (25)
and (22), it is natural to wonder why we do not observe the
same trajectories that we observed for the particle under
Lorentz force. After all, Eq. (18) is the same differential
equation as Eq. (23) after the assignment q=m! 1; E! g;
H! 2X; therefore, they should lead to exactly the same
solution. In particular, why do we not observe a particle sub-
jected to the Coriolis force following a helical trajectory, but
we do in the case of a charged particle in an electromagnetic
field, if their trajectory is dictated by the same equation of
motion? The fundamental difference relies on the fact that E

and H can be chosen arbitrary and even turned off to explore
different scenarios, while the gravity field and the Earth’s
angular velocity are much more constrained. It makes sense
to study cases where E ¼ 0, but the analogous field, g, is
non-zero at every point on the surface of the Earth. Another
important difference is that the direction of X is fixed and
the moduli of the fields g and X do not vary.

Nevertheless, the Coriolis force produces helical trajectories,
since it is a particular case of Eq. (22) with the constraints in
the fields mentioned above. We can see it more clearly if we
consider a particle thrown upwards at the north pole, where the
gravity field and the angular speed of the Earth are parallel. In
this case, g$ x̂ ¼ 0 and Eq. (25) becomes

rðtÞ ¼ r0 þ v0tþ t2

2
g

þ 1& cos ð2XtÞ
2X

v0 $ x̂ð Þ

þ t& sin ð2XtÞ
2X

" #
v0 $ x̂ð Þ $ x̂: (27)

This solution corresponds to a helix of radius R ¼ "v0=2X,

where "v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

x þ v2
y

q
is the modulus of the projected initial

velocity on Earth’s surface. This is analogous to the case of a

Fig. 3. (Color online) Trajectories of a particle under the force of gravity
alone (solid gray) and under gravity and deviated by the Coriolis force (col-
ored circles). In each panel, the initial velocity is indicated by v0 (in m/s),
and the initial height is either z=zmax ¼ 1 or 0. The same initial conditions
lead to a qualitatively different trajectory (open circles) when the angular
speed of the Earth, XE, is doubled. The x and y axes correspond to west-east
and north-south directions, respectively. The z axis (height) corresponds to
the radial direction of the Earth.
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particle in an electromagnetic field where E is parallel to H.
We show this trajectory in Fig. 4. It is interesting to note that
a full revolution of the projected helix in the XY plane (a cir-
cular orbit) is completed only if 2Xt ¼ 2p; that is, after a
flight time of T¼ 12 h. That is achievable only if speed in the
vertical direction satisfies vz > gT=2 + 211 km/s, which far
exceeds the escape velocity of the Earth. Therefore, due to
the slow rotation of the Earth, it is impossible to observe a
particle completing a full revolution of the helical trajectory.
On Jupiter, however, the Coriolis force is stronger due to the
higher angular speed of the planet, which allows for the for-
mation of the recently discovered cyclonic vortices at its
poles.16–18 This is another example of how the motion of a
particle can be intuitively understood as successive rotations
of the initial velocity v0 and the constant field a that curve
the trajectory.

C. Centrifugal force

Interestingly, it is not difficult to extend the results pre-
sented here to include the centrifugal force, which appears in
addition to the Coriolis force in rotating frames and depends
on the instantaneous position of the particle. The magnitude
of this force is of order X2, which is weaker than the Coriolis
force, of order X. Therefore, we expect that the trajectory
that we derived in Sec. III B is recovered in this case when
terms of order X2 are neglected.

Adding the centrifugal force to the problem from Sec.
III B, the resulting equation of motion is

dv

dt
¼ g& 2X$ v&X$ ðX$ rÞ; (28)

where X is the constant angular velocity of the Earth, g is
the acceleration of gravity on its surface, and r is the

instantaneous position, such that _r ¼ v. Defining X * jjXjj
and x̂ * X=X, we can write this equation as

dvðtÞ
dt
¼ aþ 2BvðtÞ þCrðtÞ; (29)

where a ¼ g; B * XDðx̂Þ, and C * X2Pðx̂Þ are constant.
Now, we introduce the change of variable

rðtÞ * VðtÞyðtÞ; (30)

where VðtÞ is defined as the operator that satisfies the differ-
ential equation dVðtÞ=dt ¼ BðtÞVðtÞ with the initial condi-
tion Vð0Þ ¼ I. The purpose of this transformation is to
eliminate the term proportional to _y for equations of motion,
where the operator C is non-zero and BðtÞ is time-
dependent. Thus, the velocity and acceleration satisfy the
equations

_rðtÞ ¼ BðtÞVðtÞyþVðtÞ _yðtÞ ¼ vðtÞ; (31)

€rðtÞ ¼ _BðtÞVðtÞ þBðtÞ2VðtÞ
& '

yðtÞ

þ2BðtÞVðtÞ _yðtÞ þVðtÞ€yðtÞ; (32)

therefore

€yðtÞ¼V&1ðtÞaþV&1ðtÞ BðtÞ2& _BðtÞþC
& '

VðtÞyðtÞ: (33)

In our case, B ¼ XDðx̂Þ is time independent, which means
that _B ¼ 0 and VðtÞ ¼ eBt. Then, using the property (11),
Eq. (33) is reduced to

€yðtÞ ¼ V&1ðtÞa ¼ e&XDðx̂Þtg: (34)

Using the property given in Eq. (16), we obtain that VðtÞ
¼ eXDðx̂Þt ¼ Rðx̂;&XtÞ and, therefore, €yðtÞ ¼ Rðx̂;XtÞg,
which can be solved by direct integration using Eq. (8), lead-
ing to

yðtÞ ¼ r0 þ v0t& XDðx̂Þr0tþ t2

2
Nðx̂Þg

& 1

X2
Rðx̂;XtÞgþ 1

X2
g& t2

X
Dðx̂Þg; (35)

where we have used the initial conditions yð0Þ ¼ V&1ð0Þrð0Þ
¼ r0 and _yð0Þ ¼ v0 & XDðx̂Þr0 given in Eqs. (30) and (31).
Now, since yðtÞ ¼ Rðx̂;XtÞrðtÞ, we can directly obtain an
expression for the position, given by

rðtÞ¼r0þv0tþ t2

2
g

&x̂$ r0þv0tþ t2

2
gþ 1

X2
g

" #
$ x̂

( )

þsinðXtÞðr-0$ x̂ÞþcosðXtÞx̂$ðr-0$ x̂Þ

þXtsinðXtÞ x̂$ðr-0$ x̂Þþ 1

X
ðv0$ x̂Þ

( )

&XtcosðXtÞ ðr-0$ x̂Þ& 1

X
x̂$ðv0$ x̂Þ

( )
; (36)

where r-0 * r0 þ ð1=X2Þg. It is not difficult to verify that Eq.
(26) is recovered when terms of order X2 are neglected.

Fig. 4. Trajectory of a particle thrown upwards from the north pole. The ini-
tial velocity, v0 ¼ ð1; 1; 500 000Þ m/s results in a helical trajectory of radius

R ¼ "v0=2X, where "v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

x þ v2
y

q
¼

ffiffiffi
2
p

m/s, due to the Coriolis force. The

projection of the trajectory in the X-Y plane is shown as a thick grey circle,
while the trajectory that the particle would follow together with its X-Y
plane projection, are shown in solid and dashed grey lines, respectively. The
maximum height reached has been normalized to one. The color scale indi-
cates forward evolution in time, where blue represents the initial conditions.
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Interestingly, it is, in principle, possible to solve this prob-
lem when there is a variable angular velocity as well, that is
X ¼ xðtÞx̂. If the explicit form of the speed xðtÞ is simple,
the integrals can be evaluated and an analytical solution can
be found.3

D. Lift and friction force

Let us consider the motion of a free-falling sheet of paper,
where the air resistance exerts a drag and lift forces such that
the resulting force acts perpendicular to the velocity.19,20 In
addition, let us consider that the magnitude of such a force is
proportional to the velocity and a more general case, where
the direction of the total force is not necessarily perpendicu-
lar to the velocity, can be considered. The equation of
motion that models such situation is

m
dv

dt
ðtÞ ¼ ma& kRðn̂;uÞvðtÞ; (37)

where Rðn̂;uÞ is the rotation operator defined in Eq. (6) and
k is a constant representing the viscous friction coefficient.
When the lift force is substantially greater than the drag
force, the force is approximately perpendicular to the veloc-
ity. Comparison with Eq. (2b) yields B ¼ &jRðn̂;uÞ,
where j * k=m. From Eq. (4), the trajectory of the particle
can be found by solving

rðtÞ ¼ r0 þ
ðt

0

e&jsRðn̂;uÞ ds
" #

v0

þ
ðt

0

ðs

0

e&jnRðn̂;uÞ dn ds
" #

a: (38)

In this case, the inverse of B does exist and the solution is
provided in Eq. (5)

rðtÞ ¼ r0 þ tj&1Rðn̂;&uÞaþ j&1Rðn̂;&uÞ
$ðI& e&tjRðn̂;uÞÞðv0 & j&1Rðn̂;&uÞaÞ: (39)

Using the properties of the matrices shown in Sec. II B, it is
possible to rewrite the term e&tjRðn̂;uÞ (see Appendix B) to
attain a more manageable expression, such that the equation
above can be written as

rðtÞ¼r0þ
t

j
Rðn̂;&uÞaþRðn̂;&uÞ

j2
jv0&Rðn̂;&uÞað Þ

&e&jtcosu

j2
Rðn̂;&u&jtsinuÞðjv0&Rðn̂;&uÞaÞ

& e&jt& e&jtcosuð Þ
j2

Nðn̂Þðjv0&aÞ: (40)

To gain a deeper physical insight of this solution, we can
consider a differential displacement in Eq. (38), using the
approximation e&jsRðn̂;uÞ + 1& jsRðn̂;uÞ, which leads to

drðtÞ ¼ ðv0 þ a tÞ dt

& jRðn̂;uÞv0ð Þt dt& jRðn̂;uÞað Þ t
2

2
dt: (41)

As we observed in the previous cases of the Coriolis and
Lorentz force, we again have a contribution from accelera-
tion in a constant field in the first term. However, the other
contributions are not perpendicular to the initial velocity, v0,

and to the constant field a, as in the previous cases. Instead,
the operator Rðn̂;uÞ causes an infinitesimal displacement in
the direction of the rotated fields with angle u.

Note that when u ¼ 0 in Eq. (40), Rðn̂;&uÞ ¼ I and we
recover the usual result of a lift force acting parallel to the
velocity, namely,

rðtÞ ¼ r0 þ
t

j
aþ 1& e&jt

j2
ðjv0 & aÞ; (42)

which represents, for example, the trajectory of a particle
falling in a viscous fluid if ma is the difference between the
weight and buoyancy, or the projectile motion of a point
mass with air resistance.

For u ¼ 6p=2 and a ¼ g, Eq. (37) describes the motion
of a sheet of paper in free fall, where the air resistance acts
perpendicular to the velocity of the object. To compare with
the result in Ref. 19, we will consider r0 ¼ 0 ¼ v0 and that
the motion takes place on the X-Y plane, where the force of
gravity is excerted along the Y axis. The direction of the air
resistance is given by a rotation of u ¼ 6p=2 about the
n̂ ¼ ẑ axis and depends on the direction of the displacement
(left or right). The different sections of the motion, after
replacing these values in Eq. (40), are described by

rðtÞ ¼ t

j
R ẑ;7

p
2

" #
g

& 1

j2
Rðẑ;7pÞgþ 1

j2
Rðẑ;7ðpþ jtÞÞg; (43)

where we have used NðẑÞv0 ¼NðẑÞg ¼ 0. Replacing the
acceleration of gravity a ¼ &gŷ, we obtain

Fig. 5. Trajectories of a particle falling under the force of gravity (a ¼ &gŷ)
and drag and lift forces, generated in Eq. (40). In each panel, we show a dif-
ferent force, which is obtained by rotating the instantaneous velocity of the
particle an angle u about the ẑ axis. Different line styles represent different
friction coefficients j ¼ k=m.
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rðtÞ ¼ 6
g

j2
ðsin ðjtÞ & jtÞx̂ þ g

j2
ðcos ðjtÞ & 1Þŷ: (44)

This model, of course, does not incorporate all of the com-
plexity of the real case.20,21 However, more realistic solu-
tions are obtained by considering an angle u > 6p=2.

In Fig. 5, we show different trajectories of a particle expe-
riencing a lift force &kRðẑ;uÞvðtÞ and its own weight.
When u ¼ p=4, the particle is deflected to the left, which cor-
responds to the direction of the force. For u ¼ p=2, the force
acts perpendicular to the velocity, which deflects the particle
upwards periodically, reaching its initial height every period.
This corresponds to the simplified model of a falling sheet of
paper. A lift force that forms an angle higher than 90o with
the velocity (two panels at the bottom) generates loops in the
air that become wider as the angle increases.

IV. CONCLUSIONS

Our proposed method provides exact solutions to the equa-
tions of motion of a particle moving in three dimensions, sub-
jected to forces that depend linearly on its instantaneous
velocity and position, and it represents a viable alternative to
other solution techniques such as matrix diagonalization. We
exploit properties of the rotation matrix and its generators. The
formal solution to Eq. (2) can be easily extended to the case in
which B depends on time, as long as B ¼ BðtÞ at a given
instant of time commutes with the value B at any other instant
of time. If it does not commute, it is necessary to appeal to the
Magnus expansion.22 Other dynamical systems, where the force
field can be expressed as a linear combination of the operators
N; P; D, and R, can also be addressed within this approach.

We presented an explicit solution to a number of seemingly
unrelated problems: a particle under the influence of Lorentz
force, the Coriolis and centrifugal forces, and a generalized lift
force. These applications can be easily extended within this
approach to other interesting cases such as a particle in a time-
dependent magnetic field, the classical Hall effect, a relativistic
particle in an electric field, harmonic oscillators with dissipa-
tive terms, normal modes, and many others.

Although not all problems that can be written as Eq. (2)
may be solved within our approach, and diagonalization may
be unavoidable in some cases, it is certainly useful for a large
number of them. The presented approach can also be used to
find an exact solution to a series of problems that have been
addressed from different approaches that can be modeled by
a differential equation, where an operator applied to a vector
is equal to its derivative.2–10 Revisiting these problems can
provide an insightful view into what Feynman referred to as
the underlying unity of nature.
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APPENDIX A: RODRIGUES’ ROTATION FORMULA
AND ROTATION MATRICES

1. Rotation of a vector

Let u 2 ½0; 2pÞ and n̂ 2 R3 a unitary vector (jjn̂jj ¼ 1).
Let Rðn̂;uÞ be the rotation transformation that, as Fig. 6
shows, takes the vector~x to~x 0 through

~x 0 ¼ Rðn̂;uÞ~x: (A1)

The vector ~x can be separated into longitudinal and trans-
verse components with respect to the rotation axis n̂, as
shown in Fig. 7

~x ¼~xL þ~xT ; (A2)

where

~xL * ð~x ) n̂Þn̂ (A3)

and

~xT *~x &~xL

¼ ðn̂ ) n̂Þ~x & ðn̂ )~xÞn̂
¼ n̂ $ ð~x $ n̂Þ: (A4)

Then,

~x ¼ ð~x ) n̂Þn̂ þ n̂ $ ð~x $ n̂Þ: (A5)

Fig. 6. Rotation in u radians about the axis n̂.

Fig. 7. Longitudinal and transverse components of~x.
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From Fig. 7, we can conclude that

~x0L ¼~xL (A6)

and

~x0T ¼~xT cos ðuÞ þ ðn̂ $~xÞ sin ðuÞ: (A7)

Then, we can infer that

~x 0 ¼ Rðn̂;uÞ~x
¼ ðn̂ )~xÞn̂ þ n̂ $ ð~x $ n̂Þ cos ðuÞ
þ ðn̂ $~xÞ sin ðuÞ: (A8)

2. Rotation matrices

We can define the transformations N, P, and D as

Nðn̂Þ~x ¼ ðn̂ )~xÞn̂; (A9a)

Pðn̂Þ~x ¼ n̂ $ ð~x $ n̂Þ; (A9b)

Dðn̂Þ~x ¼~x $ n̂: (A9c)

From Eq. (A8), it is clear that

Rðn̂;uÞ ¼Nðn̂Þ þ cos ðuÞPðn̂Þ & sin ðuÞDðn̂Þ: (A10)

We notice that if n̂ ¼ ðn1; n2; n3Þ, then the corresponding
transformation matrices are

Nðn̂Þ½ (ij ¼ ninj ðprojector kÞ; (A11)

Pðn̂Þ½ (ij ¼ dij & ninj ðprojector?Þ; (A12)

Dðn̂Þ½ (ij ¼ !ijknk ðdual of n̂Þ: (A13)

In explicit matrix form,

Nðn̂Þ ¼
n2

1 n1n2 n1n3

n1n2 n2
2 n2n3

n1n3 n2n3 n2
3

2

664

3

775; (A14a)

Pðn̂Þ ¼

1& n2
1 &n1n2 &n1n3

&n1n2 1& n2
2 &n2n3

&n1n3 &n2n3 1& n2
3

2

6664

3

7775; (A14b)

Dðn̂Þ ¼
0 n3 &n2

&n3 0 n1

n2 &n1 0

2

664

3

775: (A14c)

It is easy to verify some properties of these matrices,
such as

I ¼ PþN; (A15)

and that their squares satisfy

N2 ¼N; (A16a)

P2 ¼ P; (A16b)

D2 ¼ &P; (A16c)

D2 ¼ &P; (A16d)

PþN ¼ I: (A16e)

In addition, they all commute with each other and are
non-invertible. Using the previous properties, we can
verify that

Rðn̂;uÞ ¼ I& sin ðuÞDðn̂Þ þ ð1& cos ðuÞÞD2ðn̂Þ: (A17)

Using the Maclaurin series of the exponential, it is easy to
demonstrate that

Rðn̂;uÞ ¼ e&uDðn̂Þ: (A18)

This last result shows that D is the generator of R.
The properties listed above can be used to demonstrate

that these operators are also related by the following
identities:

eaNðn̂Þ ¼ Pðn̂Þ þ eaNðn̂Þ; (A19a)

ebPðn̂Þ ¼Nðn̂Þ þ ebPðn̂Þ; (A19b)

e&uDðn̂Þ ¼Nðn̂Þ þ cos u Pðn̂Þ & sin u Dðn̂Þ; (A19c)

eaRðn̂;uÞ ¼ eaNðn̂Þea cos uPðn̂Þe&a sin uDðn̂Þ

¼ eaNðn̂Þea cos uPðn̂ÞRðn̂; a sin uÞ;

¼ eaNðn̂Þ þ ea cos u cos ða sin uÞPðn̂Þ

&ea cos u sin ða sin uÞDðn̂Þ; (A19d)

eaNðn̂ÞebPðn̂Þ ¼ eaNðn̂Þ þ ebPðn̂Þ: (A19e)

APPENDIX B: THE OPERATOR e2tjRðn̂;uÞ

Using Eqs. (15) and (16), we can rewrite the operator
e&tjRðn̂;uÞ as

e&tjRðn̂;uÞ ¼ e&tjIetjsinuDðn̂Þe&tjð1&cosuÞD2ðn̂Þ

¼ e&tjRðn̂;&tjsinuÞe&tjð1&cosuÞD2ðn̂Þ: (B1)

Since ecD2ðn̂Þ ¼ e&cPðn̂Þ ¼Nðn̂Þ þ e&c Pðn̂Þ, we have

e&tjRðn̂;uÞ ¼ e&tjRðn̂;&tj sin uÞNðn̂Þ þ e&c Pðn̂Þ½ (; (B2)

where c ¼ &tjð1& cos uÞ. Substituting the equation above
in Eq. (39), we obtain

rðtÞ ¼ r0 þ tj&1Rðn̂;&uÞaþ j&1 Rðn̂;&uÞ½

& e&tjRðn̂;&u& tj sin uÞ Nðn̂Þð

þ etjð1&cos uÞPðn̂ÞÞ(ðv0 & j&1Rðn̂;&uÞaÞ: (30)

Using the properties in Eqs. (9)–(15), we can redistribute
the terms in Eq. (B3), which leads to
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rðtÞ¼r0þ
t

j
Rðn̂;&uÞaþRðn̂;&uÞ

j2
jv0&Rðn̂;&uÞað Þ

&e&jtcosu

j2
Rðn̂;&u&jtsinuÞðjv0&Rðn̂;&uÞaÞ

& e&jt& e&jtcosuð Þ
j2

Nðn̂Þðjv0&aÞ; (B4)

which is the result shown in Eq. (40).
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