Basic post-processing and visualization of results

Stefano Fabris

Theory@Elettra group

CNR-INFM DEMOCRITOS National Simulation Center Trieste - ITALY

Basic post-processing and visualization of results

- Molecular and crystal structure visualization
- Electronic band structure
- Density of states
- Charge density

Supercells, forces, and structural optimizations

- Setting up supercells
- Calculation of atomic forces
- Employing forces for obtaining equilibrium geometries
- A working case: supercell slabs for surfaces

Overview

Data analysis and plotting

- Calculating surface energies
- Surface electronic states
- Bonding charge analysis
- Simulating STM images

Simulating activated events

• The Nudged Elastic Band method

Cu as a working case

PWgui

pw.x < input > output

Free software for crystal and molecular structure visualization

X-window CRYstalline Structures and DENsities

Home | About | Description | Documentation | Download | News | Register

XCrySDen

XCrySDen is a crystalline and molecular structure visualisation program, which aims at display of isosurfaces and contours, which can be superimposed on crystalline structures and interactively rotated and manipulated. It can run on most UNIX platforms, without any special hardware requirements.

XCrySDen has been also ported to MAC OSX (requires X11) and Windows (requires CYGWIN).

The name of the program stands for Crystalline Structures and Densities and X because it runs under the X-Window environment.

Read more... | See screenshots ...

XCrySDen mailing list

XCrySDen mailing list is an open mailing list where XCrySDen related issues can be discussed among users.

Subscribe | Archives

- -

www.xcrysden.org

Developed by Anton Kokalj at Josef Stefan Institute - SLO

Home Mailing list News Terms of use Reference

About

Description Soft. Requirements

Documentation Installation HOWTOS FAQs

Molecular viewer: first steps

Open the file 2.xsf: File -> XCrySDen Examples ... -> XSF Files

- Experience on how to
 - rotate, zoom, change display mode
 - measure distances, angles, dihedral angles
 - modify display parameters

Print crystal structure to file

- ➡ Select menu "Print": File -> Print
- Set filename and file format (by extension)
 - file.png -- PNG format
 - file.gif -- GIF format
 - fil.eps -- EPS format
- ➡ XCrysDen takes a screenshot of your structure. So:
 - maximize the XCrysDen window
 - enlarge the structure to fill the window
 - increase tasselation factor (menu "Modify") to 40-50

Display mode: lighting on/off

- There are two levels of display modes:
 - Lighting-off mode:
 - very fast but displays only atoms and bonds
 - Lighting-on mode:
 - fancy and realistic display but may be quite slow

Crystal viewer: first steps

- Open the file ZnS.xsf:
- File -> XCrySDen Examples ... -> XSF Files
 ➡ Experience on how to
 - display the crystal cell
 - modify the number of displayed cells
 - change the unit of repetition
 - display Wigner-Seits cell
 - display Brillouin Zone
- ➡ Open the file fcc-410-1x1.xsf:
 - display at least 4x4 unit cells
 - try:

Tools -> Color scheme -> Slab colors

analyze input/ouput from QE

Visualize the crystal structure from input xcrysden --pwi input.file

Ex: open the file s110-1x1-7lay.in

Visualize the crystal structure from output xcrysden --pwo output.file

Ex: open the file pc-cu.rlx.out

Isosurfaces and contours

- Open file CO_HOMO.xsf
 File -> XCrySDen Examples ... -> XSF Files
- Select menu "Data grid"
 Tools -> Data Grid
- ➡ Then:
 - press [OK]
 - specify a value for the isovalue: ex. 0.1 (units??)
 - select: "Render +/- isovalue"
 - [Submit]

Verify that the HOMO is localized on the C atom and have sigma symmetry

ExI: XCrysDen & QE

k-path for band-structure calculation

XCrysDen can be used to specify the path in the BZ to be used for the calculation of the electronic band structure with QE

Build the following k-path for a fcc crystal: Gamma -> X -> U -> L -> Gamma

ExI: XCrysDen & QE

High-symmetry k-path for a fcc crystal

- Open the file k-path.fcc.in
- Select: Tools -> k-path selection
- select the path by clicking on a sequence of highsymmetry points: Gamma -> X -> U -> L -> Gamma
- specify how many k points to be calculated (Ex: 100)
- save the k-path to file. (.pwscf extension is required for formatting the file for pw.x)

Ex2: Electronic band structure

Self-consistent calculation (pw.x)

$$\left(-\frac{1}{2}\nabla^2 + V_{\text{eff}}(r)\right)\psi_n(r) = \epsilon_n\psi_n(r)$$

$$\rho(r) = \sum_{n} |\psi_n(r)|^2 \qquad V_{\text{eff}}(r) = \int \frac{\rho(r')}{|r-r'|} dr' + V_{XC}(r) + V_{\text{ext}}(r)$$

OUT: SCF density and effective potential

- Select a k-point path (i.e. by using XCrysDen, ...)
- \rightarrow Non self-consistent calculation (pw.x)

IN: SCF density and effective potential OUT: set of eigenvalues along the k-point path

Plot the eigenvalues along the BZ high-symmetry lines

Band structure of bulk Cu

I) Edit the input file (run-cu.scf) and run the scf calculation for bulk Cu (pw.x): ./run-cu.scf

- 2) Edit the file **run-cu.bands**:
 - i) choose the "calculation" type for performing a band structure calculation (see &control namelist)
 - ii) set the number of bands to 10: nbnd=10 (see &system namelist)
 - iii)specify the k-point list in the input file (use the file .pwscf generated with XCrysDen and insert it after the appropriate card)
- 3) Run the calculation for the specified set of k-points (pw.x): ./run-cu.bands

Band structure of bulk Cu

4) Prepare an input file for the data post processing program **bands**.x (see **Doc/INPUT_BANDS**.txt). This program print the eigenvalues to the file specified in "filband"

```
&inputpp
  prefix='',
  outdir='',
  filband='YYYY'
/
```

5) Run the postprocessing calculation (bands.x): bands.x < input > output

Band structure of bulk Cu

6) Use the program **plotband**. **x** to obtain a postscript file of the bandstructure and a set of datafiles that can be plotted with your preferred software (gnuplot, xmgr ...).

7) Plot the bandstructure of Cu bulk

Self-consistent calculation (pw.x)

OUT: SCF density and effective potential

- Select a finer mesh of k points
- ➡ Non self-consistent calculation (pw.x)

Calculate the KS eigenvalues for the finer mesh of k-points sam by using the SCF effective potential

Post processing (pp.x)

Sum all the eigenvalues having the same energy (broadening)

$$D(\varepsilon) = \sum_{n} \int \delta(\varepsilon - \epsilon_{n\mathbf{k}}) \frac{\mathrm{d}\mathbf{k}}{4\pi^3} \longrightarrow \sum_{n\mathbf{k}} w_{\mathbf{k}} \,\delta(\varepsilon - \epsilon_{n\mathbf{k}})$$

- I) Edit the input file (run-cu.scf) and run the scf calculation for bulk Cu (pw.x):
- 2) Edit the file **run-cu.nscf**:
 - i) choose the "calculation" type for performing a non self consistent calculation (see &control namelist)
 ii) set the number of bands to 12: nbnd=12 (see &system)
 - namelist)
 - iii) set a larger set of K points (Ex: 16 16 16 0 0 0)
- 3) Run the nscf calculation (pw.x): ./run-cu.nscf

4) Prepare an input file for the data post processing program dos.x (see Doc/INPUT_DOS.txt). This program print the eigenvalues to the file specified in "fildos"

```
&inputpp
   outdir='$TMP_DIR/'
   prefix=''
   fildos=''
   Emin=xxx, Emax=yyy, DeltaE=0.1
/
```

5) Run the postprocessing calculation (pp.x): pp.x < input > output

6) Inspect the output file generated by the program "dos.x"

E	(eV)	dos (E)	Int	dos (E
7.0	00	0.2438E+00	0.2438	E-01
7.1	00	0.2389E+00	0.4827	'E-01
7.2	00	0.1856E+00	0.6683	BE-01
7.3	00	0.1152E+00	0.7834	E-01
7.4	00	0.6089E-01	0.8443	BE-01
7.5	00	0.3635E-01	0.8807	'E-01
7.6	00	0.3682E-01	0.9175	E-01
7.7	00	0.5050E-01	0.9680	E-01
7.8	00	0.7013E-01	0.1038	E+00
7.9	00	0.1017E+00	0.1140	E+00
	E 7.0 7.1 7.2 7.3 7.3 7.4 7.5 7.5 7.6 7.5 7.6 7.7 7.8 7.9	E (eV) 7.000 7.100 7.200 7.300 7.300 7.400 7.500 7.600 7.700 7.800 7.800 7.900	E (eV) dos(E) 7.000 0.2438E+00 7.100 0.2389E+00 7.200 0.1856E+00 7.300 0.1152E+00 7.400 0.6089E-01 7.500 0.3635E-01 7.600 0.3682E-01 7.800 0.7013E-01 7.900 0.1017E+00	E (eV) dos(E) Int 7.000 0.2438E+00 0.2438 7.100 0.2389E+00 0.4827 7.200 0.1856E+00 0.6683 7.300 0.1152E+00 0.7834 7.400 0.6089E-01 0.8443 7.500 0.3635E-01 0.8807 7.600 0.3682E-01 0.9175 7.700 0.5050E-01 0.9680 7.800 0.7013E-01 0.1038 7.900 0.1017E+00 0.1140

7) Plot the DOS and the integrated DOS, identify the Fermi level. Compare the position of the d band with respect to the Fermi level. Relate the DOS to the band structure calculated in Ex. I.

8) Experience the dependency of the resulting DOS on the plotting variables (see Doc/INPUT_DOS.txt):

!	ngauss	Type of gaussian broadening (optional) 0
!	= 0	Simple Gaussian (default)
!	= 1	Methfessel-Paxton of order 1
!	= -1	Marzari-Vanderbilt "cold smearing"
!	=-99	Fermi-Dirac function
!	degauss	gaussian broadening, <mark>Ry (not eV!)</mark>
!	Emin, Emax	min, max energy (eV) for DOS plot
!	DeltaE	energy grid step (eV)

9) Better looking plots of metals can be obtained by using the tetrahedron method for BZ integration in the scf calculation.

Self-consistent calculation (pw.x)

OUT: SCF density and effective potential

- Select a finer mesh of k points
- ➡ Non self-consistent calculation (pw.x)

Calculate the KS eigenvalues for the finer mesh of k-points sam by using the SCF effective potential

Post processing (pp.x)

Sum all the eigenvalues having the same energy with a weight given by the overlap between the corresponding eigenstate and a localized wave function

$$D_{lm}^{I}(\varepsilon) = \sum_{n\mathbf{k}} \left| \langle \psi_{n\mathbf{k}} | \phi_{lm}^{I} \rangle \right|^{2} \, \delta(\varepsilon - \epsilon_{n\mathbf{k}})$$

I) Edit the input file (run-ni.scf) and run the scf calculation for bulk Ni (pw.x): ./run-ni.scf

Does it work? Inspect the output file: more ni.scf.out

2) Edit the file run-ni.scf adding the required information: starting_magnetization(1)=0.0

... and run again the simulation. Copy the output file: **cp ni.scf.out ni.scf.out-0magn**

- 3) Copy the input file: cp run-ni.scf run-ni.nscf
- 4) Edit the file **run-ni.nscf**:

i) choose the "calculation" type for performing a non self consistent calculation (see &control namelist)
ii) set the number of bands to 12: nbnd=12 (see &system namelist)
iii) set a larger set of K points (Ex: 16 16 16 0 0 0)

5) Run the non self consistent calculation for bulk Ni ./run-ni.nscf

6) Prepare an input file for the data post processing program **projwfc.x** (see **Doc/INPUT_PROJWFC.txt**). This program print the eigenvalues to the file specified in "filpdos"

```
&inputpp
    outdir='$TMP_DIR'
    prefix='ni'
    filpdos='xxx'
    Emin=xx, Emax=yy, DeltaE=0.1
    ngauss=1, degauss=0.02
/
```

7) Run the postprocessing program projwfc.x projwfc.x < pdos.input > pdos.output

8) Inspect the output files generated by projwfc.x

more pdos.out

```
Lowdin Charges:
```

```
Atom # 1: total charge = 9.8845,
s = 0.9326, p = 0.0000, d = 8.9519,
```

Spilling Parameter: 0.0116

Don't you notice anything unusual or surprising? What is the occupation of the Ni s and d states that you would have expected?

Ex4: Projected Density of electronic states - PDOS 9) Edit the file run-ni.scf and modify the starting

magnetization:

```
starting_magnetization(1)=0.7
```

10) Run again the scf calculation (pw.x).

II) Compare the total energy of this simulation with the one obtained before (see file ni.scf.out-Omagn). Do they differ? Why (or why not)?

12) Check the spin polarization of the two simulations.

I3) Recalculate the pdos for the latter SCF solution (follow again steps 3-7, set a different name for "filpdos")

14) Inspect the output files generated by projwfc.x

```
more pdos.out
```

```
Lowdin Charges:

Atom # 1: total charge = 9.8825, s = 0.9368, p = 0.0000,

d = 8.9457,

spin up = 5.2311, s = 0.4609, p = 0.0000,

d = 4.7702,

spin down = 4.6515, s = 0.4759, p = 0.0000,

d = 4.1756,

polarization = 0.5796, s = -0.0150, p = 0.0000,

d = 0.5946,
```

Does this result make more sense? Why?

more ni.pdos_atm#1(Ni)_wfc#1(s)

E (eV) ldosup(E) ldosdw(E) pdosup(E) pdosdw(E) 5.000 -0.263E-05 -0.152E-05 -0.263E-05 -0.152E-05 5.100 -0.133E-04 -0.840E-05 -0.133E-04 -0.840E-05 5.200 -0.513E-04 -0.351E-04 -0.513E-04 -0.351E-04 5.300 -0.152E-03 -0.112E-03 -0.152E-03 -0.112E-03 5.400 -0.338E-03 -0.274E-03 -0.338E-03 -0.274E-03 5.500 -0.492E-03 -0.470E-03 -0.492E-03 -0.470E-03

more ni.pdos atm#1(Ni) wfc#2(d)

E (eV) ldosup(E) ldosdw(E) pdosup(E) pdosdw(E) pdosup(E) pdosdw(E) pdosup(E) pdosdw(E) pdosup(E) pdosdw(E) pdosdw(E)

5.000 -0.704E-10 -0.294E-10 -0.510E-11 -0.209E-11 -0.201E-10 -0.840E-11 -0.201E-10 -0.840E-11 -0.510E-11 -0.209E-11 -0.201E-10 -0.840E-11

5.100 -0.664E-09 -0.303E-09 -0.575E-10 -0.258E-10 -0.183E-09 -0.839E-10 -0.183

E-09 -0.839E-10 -0.575E-10 -0.258E-10 -0.183E-09 -0.839E-10

••• •••

I) Edit the input file (run-si.scf) and run the scf calculation for bulk Si (pw.x):
./run-si.scf

2) The charge density is calculated by means of the post processing program **pp.x**. This program can perform several operations: check the documentation **Doc/INPUT_PROJWFC.txt**

2)Prepare an input file for the data post processing program **pp.x**.


```
Program: pp.x
         Purpose: data analysis and plotting.
         The code performs two steps:
         1) reads the output file produced by pw.x, extract and
calculate
            the desired quantity (rho, V, ...)
         2) writes the desired quantity to file in a suitable format
for
            various types of plotting and various plotting programs
         The input data of this program are read from standard input
         or from a file and have the following format:
   Namelist & inputpp
         containing the variables for step 1), followed by
   Namelist &plot
         containing the variables for step 2)
!-&inputPP
                 Namelist & inputPP; contains
                prefix of files saved by program pw.x
   prefix
  ! outdir
                temporary directory where pw.x files resides
  ! filplot
                file "filplot" contains the quantity selected by
plot num
                (can be saved for further processing)
```



```
! plot num
              selects what is saved in filplot:
                   0=charge
                   1=total potential V bare+V H + V xc
                   2=local ionic potential
                   3=local density of states at e fermi
                   4=local density of electronic entropy
                   5=STM images
                   6=spin polarization (rho(up)-rho(down))
                   7=|psi|^2
                   8=electron localization function (ELF)
                   9=planar average of all |psi|^2
                  10=integrated local density of states (ILDOS)
                     from emin to emax (emin, emax in eV)
                     if emax is not specified, emax=E fermi
                  11=the V bare + V H potential
                  12=the electric field potential
                  13=the noncollinear magnetization.
                Options for total charge (plot num=0):
   spin component 0=total charge (default value),
                   1=spin up charge,
                   2=spin down charge.
```


3) Prepare an input file for the data post processing program **pp.x**.

```
&inputpp
    prefix = 'si'
    outdir = '$TMP_DIR',
    filplot = 'si.charge'
    plot_num= XX
/
```

4) Run the postprocessing program **pp.x pp.x < charge.input > charge.output**

The output file 'si.charge' contains the values of the total valence charge on a regular grid in real space

The output file 'si.charge' contains the values of the total file values of the total valence charge on a regular grid in real space. This data file can now be further processed for plotting some specific property.

```
!-&plot
                   Namelist &plot; contains
         nfile
                     the number of data files (OPTIONAL, default: 1)
   ----FOR i = 1, nfile:
         filepp(i)
                    nfile=1: file containing the quantity to be plotted
                     nfile>1: see "weight"
                     (default: filepp(1)=filplot)
         weight(i)
                   weighing factors: assuming that rho(i) is the
quantity
                     read from filepp(i), the quantity that will be
plotted is:
                     weight(1) *rho(1) + weight(2) *rho(2) +
weight (3) *rho(3) +...
                     (OPTIONAL: default weight(1)=1.0)
                     BEWARE: atomic coordinates are read from the first
file;
                     if their number is different for different files,
                     the first file must have the largest number of atoms
     --END FOR
```


	! iflag 0	1D plot of the spherical average	gr				
	! 1	1D plot					
	! 2	2D plot					
	! 3	3D plot					
	! 4	2D polar plot on a sphere					
	! output_format (ignored on 1D plot)						
	! 0	format suitable for gnuplot (1D)					
	! 1	format suitable for contour.x (2D)					
	! 2	format suitable for plotrho (2D)					
	! 3	format suitable for XCRYSDEN (1D, 2D, 3D)					
	! 4	format suitable for gOpenMol (3D)					
	!	(formatted: convert to unformatted *.plt)					
	! 5	format suitable for XCRYSDEN (3D)					
	! 6	format as gaussian cube file (3D)					
	!	(can be read by many programs)					
••	!-ELSEIF iflag = 2						
	!	REQUIRED:					
	e1, e2	3D vectors which determine the plotting plane					
	!	(must be orthogonal)					
	x 0	3D vector, origin of the plane					
	! nx, ny	number of points in the plane:					
	!	rho(i,j) = rho(x0 + e1 * (i-1)/(nx-1)					
	!	+ e2 * (j-1)/(ny-1)), i=1,	nx ;				
j=:	l,ny						
	!						

fileout name of the file to which the plot is written (DEFAULT: standard output)

5) Prepare an input file (for the program **pp**.**x**) that reads the file '**si.charge**' and that plot a 2D charge density on a (001) plane intersecting the Si atoms. Specify the output format for XCrysDen.

```
&plot
  nfile=x
  filepp(1)='si.charge'
  iflag=x
  output format=x
  e1(1)=xx, e1(2)=xx, e1(3)=xx,
  e^{2}(1) = xx, e^{2}(2) = xx, e^{2}(3) = xx,
  x0(1) = xx, x0(2) = xx, x0(3) = xx,
  nx=40, ny=40
                                     001 plane
  fileout='si.charge001.xsf'
```


6) Plot the charge density with XCrysDen and save it to file

5) Prepare an input file (for the program **pp**.**x**) that reads the file '**si.charge**' and that plot a 2D charge density on a (110) plane intersecting the Si atoms. Specify the output format for XCrysDen.

&plot nfile=x filepp(1)='si.charge' iflag=x output format=x e1(1)=xx, e1(2)=xx, e1(3)=xx, $e^{2}(1) = xx$, $e^{2}(2) = xx$, $e^{2}(3) = xx$, x0(1) = xx, x0(2) = xx, x0(3) = xx, nx=40, ny=40fileout='si.charge001.xsf'

6) Plot the charge density with XCrysDen and save it to file as a png image