
Advanced School in

High Performance

and GRID Computing

ICTP HPC School 2008 – Trieste, Italy - November 03-14, 2008

The art of benchmarking The art of benchmarking

Stefano Cozzini
CNR-INFM DEMOCRITOS, Trieste

Agenda/ Aims Agenda/ Aims

● Give you the feeling how much is important to
know how your system/
application/computational experiment is
performing..

● Name a few standard benchmarks that can
help you in making/taking a decision

● Show you some tricks and tips how to make
your own benchmarking procedure

benchmark: a definition benchmark: a definition

a benchmark is the act of running a computer
program, a set of programs, or other operations,
in order to assess the relative performance of an
object, normally by running a number of
standard tests and trials against it

from wikipedia

three important notes: three important notes:

● no single number can reflect overall
performance

● the only benchmark that matters is the
intended workload.

● The purpose of benchmarking is not to get the
best results, but to get consistent repeatable
accurate results that are also the best results.

 a few challenges in benchmarking:a few challenges in benchmarking:
● Benchmarking is not easy and often involves

several iterative rounds in order to arrive at
predictable, useful conclusions. Interpretation
of benchmarking data is also extraordinarily
difficult.
– Vendors tend to tune their products specifically for

industry-standard benchmarks. Use extreme
caution in interpreting their results.

– Many benchmarks focus entirely on the speed of
computational performance, neglecting other
important features of a computer system.

– Benchmarks seldom measure real world
performance of mixed workloads — running
multiple applications concurrently in a full, multi-
department environment

What we need to benchmark on a What we need to benchmark on a
modern systemmodern system

● Local: only a single processor
(core) is performing
computations.

● Embarrassingly Parallel -each
processor (core) in the entire
system is performing
computations but they do no
communicate with each other
explicitly.

● Global -all processors in the
system are performing
computations and they explicitly
communicate with each other.

Type of code for benchmarkType of code for benchmark
● Synthetic codes

– Basic hardware and system performance tests

– Meant to determine expected future performance
and serve as surrogate for workload not
represented by application codes

– useful for performance modeling

● Application codes
– Actual application codes as determined by

requirements and usage

– Meant to indicate current performance

– Each application code should have more than one
real test case

A very incomplete list of freely available A very incomplete list of freely available
benchmark: benchmark:

● General benchmark:
– HPL Linpack (for Top500)

– HPC Challenge Benchmark:
● a collection of basic benchmark beyond HPL

– NAS benchmark suite
● math kernel implemented both in MPI and openMP

● Network benchmark:
– Netpipe /Netperf

● tcp/ip protocol and more

– IMB
● MPI protocol

● I/O benchmarks: Iozone /bonnie etc..

HPCC benchmark HPCC benchmark
● The HPC Challenge benchmark consists of basically 7 tests:

● 1. HPL - the Linpack TPP benchmark which measures the floating point rate of
execution for solving a linear system of equations.

● 2. DGEMM - measures the floating point rate of execution of double precision
real matrix-matrix multiplication.

● 3. STREAM - a simple synthetic benchmark program that measures sustainable
memory bandwidth (in GB/s) and the corresponding computation rate for simple
vector kernel.

● 4. PTRANS (parallel matrix transpose) - exercises the communications where
pairs of processors communicate with each other simultaneously. It is a useful test
of the total communications capacity of the network.

● 5. RandomAccess - measures the rate of integer random updates of memory
(GUPS).

● 6. FFT - measures the floating point rate of execution of double precision
complex one-dimensional Discrete Fourier Transform (DFT).

● 7. Communication bandwidth and latency - a set of tests to measure latency and
bandwidth of a number of simultaneous communication patterns; based on b_eff
(effective bandwidth benchmark).

Computational resources to Computational resources to
benchmarkbenchmark

HPCC components HPCC components

Remember:Remember:

● THERE IS NO BENCHMARK THAT SUBSTITUTES
 your own code on your dataset

● Measurement should be done by you on your
code !

a few tips to benchmark your application.a few tips to benchmark your application.
● use /usr/bin/time and take note of all times

– wall time/ user time /sys time

● repeat the same run at least a few time to
estimate the fluctuations of the numbers (this
should be generally within a few percent)

● be sure to be alone on the system you are
using and with no major perturbation on your
cluster

● execution runs should be at least in the order
of tens of minutes

● always check the correctness of your scientific
output

eLBaS: eLab Benchmark Suite:eLBaS: eLab Benchmark Suite:
● Aim:

– collect a set of scientific codes with several dataset
representing actual workload of our user community

– run them on all the machine available to us

– create a database of the results and keep it updated

● Status:
– work in progress:

● identified codes and dataset
● running benchmarks collecting the results
● databas/web interface to it to be built

● Open effort:
– people can check results

– people interested can contribute sending us results

eLBaS : codes and datasets eLBaS : codes and datasets

● Codes are as much as possible heterogeneous:
– Material/Nano Science (mainly) (Q/E,dlprotein/QMC)

– Climate modeling

– CFD

– Nuclear Physics

– Other to come

● Datasets
– Small dataset: to test SMP multicore

– large/medium data set to test medium size clusters

– specific workload to test HPC/GRID infrastructure in
oder to assses the global throughtput

some results for multicore machine some results for multicore machine

a few information more:a few information more:

● software stack:
– Intel Fortran/C/C++ Compiler 10.1.018

– OpenMPI 1.2.8

– MKL 10.0.5.025

– FFTW 3.2 compiled with SSE2 support

On AMD machines comparative tests were conducted to
investigate the performance gain that the ACML library
could o er on native architectureff with respect to the
MKL.

HPCC: hplHPCC: hpl

● LU factorization: mainly BLAS level 3
dominated.

HPL: performance for coreHPL: performance for core

HPL: ACML vs MKL HPL: ACML vs MKL

HPCC: stream HPCC: stream

● Single: one single stream instance
● Star: all the CPUs running stream..

Quantum/Espresso preliminary resultsQuantum/Espresso preliminary results

● Pwscf3:
– small SCF calculation

● CP
– CP MD test

Role of MKL/ACML on blade for Q/E... Role of MKL/ACML on blade for Q/E...

● pwscf3 ● cptest

a few results....a few results....

scalability results scalability results

0 4 8 12 16 20 24

0

4

8

12

16

20

24

pwscf3 scalability
cldell
neon
zebra

processors

sp
ee

du
p

0 4 8 12 16 20 24
0

4

8

12

16

20

24

CP scalability

cldell
neon
zebra

processors
sp

ee
du

p

more results... more results...

Finally..Finally..

 The more you benchmark

 the less you understand..

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

