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Agenda/ Aims   Agenda/ Aims   

● Give you the feeling how much is important to 
know how your system/ 
application/computational experiment is 
performing.. 

● Name a few standard benchmarks that can 
help you in making/taking a decision

● Show you some tricks and tips how to make  
your own benchmarking procedure 



  

benchmark: a definition benchmark: a definition 

a benchmark is the act of running a computer 
program, a set of programs, or other operations, 
in order to assess the relative performance of an 
object, normally by running a number of 
standard tests and trials against it

from wikipedia



  

three  important notes: three  important notes: 

●  no single number can  reflect overall 
performance

● the only benchmark that matters is the 
intended workload.

● The purpose of benchmarking is not to get the 
best results, but to get consistent repeatable 
accurate results that are also the best results.



  

  a few challenges in benchmarking:a few challenges in benchmarking:
● Benchmarking is not easy and often involves 

several iterative rounds in order to arrive at 
predictable, useful conclusions.  Interpretation 
of benchmarking data is also extraordinarily 
difficult. 
– Vendors tend to tune their products specifically for 

industry-standard benchmarks. Use extreme 
caution in interpreting their  results.

– Many benchmarks focus entirely on the speed of 
computational performance, neglecting other 
important features of a computer system.

– Benchmarks seldom measure real world 
performance of mixed workloads — running 
multiple applications concurrently in a full, multi-
department environment



  

What we need to benchmark on a What we need to benchmark on a 
modern systemmodern system

● Local: only a single processor 
(core) is  performing 
computations. 

● Embarrassingly Parallel -each 
processor (core)  in the entire 
system is performing 
computations  but they do no 
communicate with each other  
explicitly. 

● Global -all processors in the 
system are  performing 
computations and they explicitly  
communicate with each other.



  

Type of code for benchmarkType of code for benchmark
● Synthetic codes

– Basic hardware and system performance tests

– Meant to determine expected future performance 
and serve as surrogate for workload not 
represented by application codes

– useful for performance modeling 

● Application codes
– Actual application codes as determined by 

requirements and usage

– Meant to indicate current performance

– Each application code should have more than one 
real test case



  

A very incomplete list of freely available A very incomplete list of freely available 
benchmark: benchmark: 

● General benchmark:
– HPL Linpack (for Top500) 

– HPC Challenge Benchmark:
● a collection of basic benchmark beyond HPL 

– NAS benchmark suite
● math kernel implemented both in MPI and openMP

● Network benchmark:
– Netpipe /Netperf 

● tcp/ip protocol and more 

– IMB
● MPI protocol 

● I/O benchmarks:  Iozone /bonnie etc.. 



  

HPCC benchmark HPCC benchmark 
● The HPC Challenge benchmark consists of basically 7 tests:

●    1. HPL - the Linpack TPP benchmark which measures the floating point rate of 
execution for solving a linear system of equations.

●    2. DGEMM - measures the floating point rate of execution of double precision 
real matrix-matrix multiplication.

●    3. STREAM - a simple synthetic benchmark program that measures sustainable 
memory bandwidth (in GB/s) and the corresponding computation rate for simple 
vector kernel.

●    4. PTRANS (parallel matrix transpose) - exercises the communications where 
pairs of processors communicate with each other simultaneously. It is a useful test 
of the total communications capacity of the network.

●    5. RandomAccess - measures the rate of integer random updates of memory 
(GUPS).

●    6. FFT - measures the floating point rate of execution of double precision 
complex one-dimensional Discrete Fourier Transform (DFT).

●    7. Communication bandwidth and latency - a set of tests to measure latency and 
bandwidth of a number of simultaneous communication patterns; based on b_eff 
(effective bandwidth benchmark). 



  

Computational resources to Computational resources to 
benchmarkbenchmark



  

HPCC components HPCC components 



  

Remember:Remember:

● THERE IS NO BENCHMARK THAT SUBSTITUTES 
 your own code on your dataset

● Measurement should be done by you on your 
code ! 



  

a few tips to benchmark your application.a few tips to benchmark your application.
● use /usr/bin/time and take note of all times

– wall time/ user time /sys time

● repeat the same run at least a few time to 
estimate the fluctuations of the numbers (this 
should be generally within a few percent) 

● be sure to be alone on the system you are 
using and with no major perturbation on your 
cluster

● execution runs should be at least in the order 
of tens of minutes 

● always check the correctness of your scientific 
output 



  

eLBaS: eLab Benchmark Suite:eLBaS: eLab Benchmark Suite:
● Aim:

– collect  a set of scientific codes with several dataset 
representing actual workload of our user community

– run them on all the machine available to us

– create a database of the results and keep it updated

● Status:
– work in progress: 

● identified codes and dataset
● running benchmarks collecting the results 
● databas/web interface to it to be built 

● Open effort: 
– people can check results 

– people interested can contribute sending us results 



  

eLBaS : codes and datasets eLBaS : codes and datasets 

● Codes are as much as possible heterogeneous:
– Material/Nano Science (mainly) (Q/E,dlprotein/QMC)

– Climate modeling 

– CFD

– Nuclear Physics 

– Other to come

● Datasets 
– Small dataset: to test SMP multicore 

– large/medium data set to test medium size clusters

– specific workload to test HPC/GRID infrastructure in 
oder to assses the global throughtput 



  

some results for  multicore machine some results for  multicore machine 



  

a few information more:a few information more:

● software stack:
– Intel Fortran/C/C++ Compiler 10.1.018 

–  OpenMPI 1.2.8 

– MKL 10.0.5.025 

– FFTW 3.2 compiled with SSE2 support 

On AMD machines comparative tests were conducted to 
investigate the  performance gain that the ACML library 
could o er on native architectureff   with respect to the 
MKL.



  

HPCC: hplHPCC: hpl

● LU factorization: mainly  BLAS level 3 
dominated.



  

HPL: performance for coreHPL: performance for core



  

HPL: ACML vs MKL HPL: ACML vs MKL 



  

HPCC: stream HPCC: stream 

● Single: one single stream instance
● Star: all the CPUs running stream..



  

Quantum/Espresso preliminary resultsQuantum/Espresso preliminary results

● Pwscf3:
– small SCF calculation 

● CP
– CP MD test 



  

Role of MKL/ACML on blade for Q/E...  Role of MKL/ACML on blade for Q/E...  

● pwscf3 ● cptest 



  

a few results....a few results....



  

scalability results scalability results 
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more results... more results... 



  

Finally..Finally..

 The more you benchmark 

                              the less you understand.. 
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