

Doping and defects in oxide semiconductors

Anderson Janotti

Materials department University of California, Santa Barbara

A. Janotti, Latin American School on Computational Materials Science, Santiago, Chile, 19 - 30 January 2009

Acknowledgments

- C. G. Van de Walle (Materials Dept. UCSB)
- J. Varley, J. Lyons, J. Weber, A. K. Singh (Materials Dept., UCSB)
- T. Ive, J. Speck (Materials Dept., UCSB)
- S. Limpijumnong, P. Reunchan (Suranaree Univ. of Tech. Thailand)
- M. Scheffler, P. Rinke (FHI-Berlin, UCSB)
- G. D. Watkins (Lehigh University)
- M. McCluskey (Washington State University)
- L. Halliburton (West Vitginia University)

Supported by

- NSF MRSEC
- Solid State Lighting and Energy Center at UCSB
- CNSI and Teragrid computer facilities

Oxide semiconductors

Wide range of crystal structures with interesting properties

Source

Channe

- Transparent and conductors
- "invisible" electronics

Light emitting diodes and laser diodes

2-inch ZnO wafer grown by Eagle-Picher Technologies

Figure 2. Photograph of a 2 inch ZnO single crystal. Maeda *et. al.*, Semicond. Sci. Technol. **20** (2005) S49-S54

ZnO-based transparent transistors, J. F. Wager, Science 300, 1245 (2003)

K. Nomura et al, Science 300, 1269 (2003)

"Invisible" ZnO transistor MRS Bulletin (2003)

Zinc oxide

"Old" multifunctional material

most applications use polycrystalline phase

Electronics

- Nonlinear resistance in poly-ZnO
 - varistors: surge protectors
- Large piezoelectric constants
 - transducers

Chemistry

- cosmetics, sun-burn cream (block ultraviolet light)
- tire (improve abrasion resistance, tear strength)
- painting
- catalysis, gas sensors (electrical response to adsorbing molecules)

Zinc oxide for optoelectronics

Injection lasers

- Light-emitting diodes
 - Solution of the set of
 - low concentration of defects
 - Inced to control electrical conductivity
 - both n-type and p-type doping

ZnO main problem: control of conductivity

As-grown ZnO is always n-type

- \bigcirc bulk substrates ~10¹⁵ 10¹⁶ cm⁻³
- \bigcirc epitaxial films ~10¹⁶-10¹⁹ cm⁻³

Given States and Contract States and Apple an

- Traditionally attributed to native point defects
 - oxygen vacancies and zinc interstitials
 - conductivity varies with oxygen partial pressure

Very difficult to achieve p-type doping

Kroger, *The Chemistry of imperfect crystals*, (North-Holland Publishing Co., Amsterdam, 1964)
Tomlins, Routbort, & Mason. J. Appl. Phys. Rev. 87, 117 (2000).
Look, Hemsky, and Sizelove, Phys. Rev. Lett. 82, 2552 (1999)
Look et. al., Phys. Rev. Lett. 95, 225502 (2005)

First-principles calculations for defects/impurities

Density functional Theory

- projector augmented wave potentials
- \bigcirc local density approx. and LDA+U
- periodic boundary conditions, supercells

Properties of interest

- formation energies (defect/impurity concentrations)
- transition levels (shallow/deep donor/acceptor)
- migration barriers (stability)
- configuration coordinate diagrams (optical transitions)
- frequencies of local vibration modes (direct comparison with exp.)

C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. **95**, 3851 (2004)

A. Janotti and C. G. Van de Walle, Phys. Rev. B 76 165202 (2007)

Formalism

E_{form}: formation energies

$$\label{eq:Voq} \begin{split} & \bigvee V_O{}^q \ \text{oxygen vacancy in charge state q} \\ & E_{form}(V_O{}^q) = E_{tot}(ZnO:V_O{}^q) - E_{tot}(ZnO) + \mu_O + q \ \textit{\textit{E}_F} \end{split}$$

 \subseteq H_i⁺ interstitial hydrogen in the positive charge state E_{form}(H_i⁺) = E_{tot}(ZnO:H_i⁺) – E_{tot}(ZnO) – μ_{H} + E_{F}

 μ_{O} : energy of oxygen in reservoir, varies from Zn-rich to O-rich $\mu_{O} + \mu_{Zn} = \Delta H_{f}(ZnO) = -3.6 \text{ eV}$ formation enthalpy of ZnO μ_{H} : energy of hydrogen in reservoir, H₂ molecule E_{F} : energy of electron in its reservoir, i.e., the Fermi level

Review: C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004)

Native point defects in ZnO (Zn-rich)

Most relevant:

- ▷ Oxygen vacancies (V₀)
- Zinc interstitials (Zn_i)
- ▷ Zinc vacancies (V_{Zn})

A. Janotti and C. G. Van de Walle, Phys. Rev. B **76** 165202 (2007); Appl. Phys. Lett. **87**, 12210 (2005); J. Cryst. Growth **287**, 58 (2006)

Oxygen vacancy

 $V_{\rm O}$

- deep donor (2+/0) at ~1 eV below CBM cannot contribute to *n*-type conductivity
- high formation energy in *n*-type samples low concentrations
- Iow formation energy in *p*-type samples can compensate acceptors

A. Janotti and C. G. Van de Walle, Phys. Rev. B **76** 165202 (2007); Appl. Phys. Lett. **87**, 12210 (2005); J. Cryst. Growth **287**, 58 (2006)

Oxygen vacancy - very large local relaxations

Oxygen vacancy - comparison with experiments

Evans, Giles, Halliburton & Kappers, J. Appl. Phys. **103**, 043710 (2008). A. Janotti and C. G. Van de Walle, Appl. Phys. Lett. **87**, 122102 (2005).

Oxygen vacancy - comparison with experiments

Vlasenko & Watkins, Phys. Rev. B 71, 125210 (2005).

A. Janotti and C. G. Van de Walle, Appl. Phys. Lett. 87, 122102 (2005).

Zinc interstitial

A. Janotti and C. G. Van de Walle, Phys. Rev. B **76** 165202 (2007); Appl. Phys. Lett. **87**, 12210 (2005); J. Cryst. Growth **287**, 58 (2006)

Zinc vacancy

- VZn
- ▶ deep acceptor, (-/2-) ~0.9 eV above VBM
- Iow formation energy in *n*-type samples high concentrations
- likely cause of green luminescence
- not relevant in *p*-type samples

A. Janotti and C. G. Van de Walle, Phys. Rev. B **76** 165202 (2007); Appl. Phys. Lett. **87**, 12210 (2005); J. Cryst. Growth **287**, 58 (2006)

Possible donor impurities in ZnO

hydrogen 1 H					10		. 121		0							1555	. 165	^{hstum} 2 He
1.0079 Ithium	beryflium	1											boron	carbon	nitrogen	oxygen	fluorine	4.0026 neon
1.1	Po.												Ď	ĉ	Ń	ů	F	No
LI	De												D		11 007	U	F 18.058	INC
sodium	magnesium												aluminium	silicon	phosphorus	sultur	chlorine	argon
11	12												13	14	15	16	17	18
Na	Mg												AI	SI	P	S	CI	Ar
22.990 potassium	24.305		scordum	12 solum	wara-firm	chromium	0000000000	ime	mahalt	nickel	orear	7850	26.982 collium	28.086	30.974	32.065 selenkum	35.453 bromine	39.948 kombo
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63,546	65.39	69.723	72.61	74.922	78.96	79.904	83.90
rubidium 37	strontum 38		yttrium 39	zirconium 40	nicbium 41	molybdenum 42	technetium 43	ruthenium	rhodium 45	palladium 46	silver 47	cadmium 48		50	antimony 51	tellurium 52	iodine 53	xenon 54
Dh	Gr		V	Zr	Nh	Mo	To	Du	Dh	Dd	Aa	Cd	In	Sn	Sh	To	Ĩ	Yo
RD	31		I	21	UN	INIO	IC	КU	NII	FU	Ay	Cu	111	SII	30	Ie	100.00	ve
caesium	barium		lutetium	91,224 hafnium	tantalum	95,94 tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thalium	118.71 lead	121.76 bismuth	polonium	astatine	131,29 radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114		_	_	
Fr	Ra	**	Lr	Rf	Db	Sa	Bh	Hs	Mt	Uun	Uuu	Uub		Uua				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

*Lanthanide series	lanthanum 57	58	59	60	61	62	europium 63	64 Gd	65	dysprosium 66	67	68	69	ytterbium 70
	Ld 138.91	140.12	140.91	144.24	P111	3111 150.36	EU 151.96	157.25	158.93	162.50	HO 164.93	167.26	168.93	173.04
* * Actinide series	actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
	Ac	Th	Pa	U 238.03	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Hydrogen is present in almost growth and processing environments
 difficult to avoid hydrogen incorporation

Interstitial hydrogen in ZnO

C. G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000)

- Low formation energy (consistent with observed solubility)
- Shallow donor (consistent with observed electron concentrations)
- Low migration barrier of ~0.9 eV

[unstable at temperatures where *n*-type conductivity is known to persist (~500°C)]

Cannot explain observed dependence of conductivity on oxygen pressure (main argument in favor of oxygen vacancies)

UCSB

Hofmann et. al, Phys. Rev. Lett. **88**, 45504 (2002) Jokela and McCluskey, Phys. Rev. B **72**, 113201 (2005) Shi, et. al, Phys. Rev. B **72**, 195211 (2005)

Have to reconsider the role of hydrogen...

Hydrogen in molecules

intermolecular(hydrogen bonding)

3-center 2-electron bonds(Lipscomb, Nobel Prize in Chemistry1976)

Hydrogen in solids

can bond to different types of host atoms

- bonds to the anion
- bonds to the cation

Fig 1. (a) N-H and (b) N-H₂* models in dilute GaAsN alloys

Janotti, Wei, Zhang, Van de Walle, Phys. Rev. Lett. 89, 086403 (2002)

Current understanding
 hydrogen bonds to only one atom
 in exceptional cases, to two other atoms

Hydrogen can also occupy O sites in oxides

H forms a multicenter bond *k* equally bonds to the four Zn neighbors

A. Janotti and C. G. Van de Walle, Nature Materials 6, 44 (2007)

Hydrogen multicenter bond in ZnO

Density of States of ZnO

Density of States of H₀ in ZnO

Density of States of H₀ in ZnO

Density of States of H₀ in ZnO

Charge density H multicenter bond in ZnO

Charge density H multicenter bond in ZnO

Ho in ZnO - Formation energy

▶ H₀ has low formation energy
 ▶ shallow donor
 ▶ stable against dissociation
 H₀⁺ → H_i⁺ + V₀⁰

H_o migration in ZnO

 migration barrier of 2.5 eV
 becomes mobile at ~500°C
 consistent with experimental observations Shi, *et al.*, Phys. Rev. B 72, 195211 (2005)

Unintentional *n*-type conductivity in ZnO

H₀ explains the dependence of *n*-type conductivity on oxygen partial pressure

Hydrogen multicenter bond in MgO

H sixfold coordinated ! **O** *s* **O***p* Local DOS (states/eV) Total DOS (states/eV) MgO 500 Mg s gap ょ 0 MgO:HO 500 0 Н 8 0 Mg s 8 0 -15 -10 5 10 -5 Energy (eV)

Hydrogen multicenter bond in MgO

Conductivity in SnO₂

- Rutile structure; band gap: 3.6 eV
 - Sensors
 - Transparent conductor
- *n*-type conductivity:
 not due to intrinsic point defects
 - V_o high formation energy, deep donor
 - Sn_i, Sn_o: high formation energy
- Impurities?
- Hydrogen
 - Interstitial hydrogen: Shallow donor, Low diffusion barrier
 - Substitutional hydrogen: Shallow donor, Diffusion barrier: 2.2 eV

A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van de Walle, Phys. Rev. Lett. 101, 055502 (2008).

Conductivity in SnO₂

p-type doping

- Difficult in ZnO
 - » N: high formation energy
 - » Group-I on Zn site: deep acceptors, or self-compensation
- Potentially more feasible in SnO₂:
 - » Group-III on Sn site

Acceptors

- AI, Ga, In on Sn site
- Low ionization energy
- Modest formation energy
- Complexes
 - Al-H, Ga-H, In-H

Hydrogen multicenter bonds in oxides

ZnO wurtzite 5-center bond

SrTiO₃ perovskite 3-center bond

MgO rocksalt 7-center bond

SnO₂ rutile 4-center bond

In₂O₃ 5-center bond

TiO₂ rutile 4-center bond

Conclusions

- Unintentional *n*-type conductivity in ZnO cannot be explained by native defects
- Oxygen vacancy is a deep donor
- Zinc interstitial is unstable

Hydrogen is a plausible source of unintentional *n*-type conductivity in ZnO
 H occupies O sites and form a multicenter bond

- Shallow donor
- Low formation energy
- Stable up to ~500 °C
- Concentration varies with oxygen partial pressure
- Similar behavior in SnO₂, In₂O₃, TiO₂

[Singh, Janotti, Scheffler, Van de Walle, Phys. Rev. Lett. 101, 055502 (2008)]

A. Janotti and C. G. Van de Walle
Nature Materials 6, 44 (2007)
Phys. Rev. B 76 165202 (2007)
Appl. Phys. Lett. 87, 12210 (2005)
J. Cryst. Growth 287, 58 (2005)

