Magnetism, Percolation and Doping in Oxides

Outline

- 1. Basic principles.
- 2. Theoretical method and examples.
- 3. Conclusions.

Outline

- 1. Basic principles.
- 2. Theoretical method and examples.
- 3. Conclusions.

Basic principles: fundamental questions

Which are the physical conditions required for the creation of collective ferromagnetism in nonmagnetic oxides by means of intrinsic point defects or dopants?

Basic principles: usual answer

Which are the physical conditions required for the creation of collective ferromagnetism in nonmagnetic oxides by means of intrinsic point defects or dopants?

The most common answer is to identify a defect or dopant with a nonvanishing magnetic moment (usually its neutral charge state) by electronic structure calculations and for those proceed to the calculation of its magnetic properties (magnetic exchange interactions between a pair of them).

Basic principles: electronic structure

Properties:

- Impurity-band in the semiconducting gap.
- Spin polarization.
- Half-metallicity.
- Exchange splitting.

Basic principles: exchange interaction

Properties:

- Exchange parameters decay quickly (related to wide gap and half-metallicity).
- In the absence of charge carriers the exchange interaction is antiferromagnetic.
- (ZnFe)O and (ZnNi)O are ferromagnetic and (ZnMn)O is antiferromagnetic for both concentrations. (ZnCo)O is ferromagnetic for high and antiferromagnetic for low concentration.

Outline

- 1. Basic principles.
- 2. Theoretical method and examples.
- 3. Conclusions.

Theoretical method: a more complete methodology

First step: one must identify a defect or dopant that has, in isolation, a non-vanishing magnetic moment.

Second step: once an isolated defect or dopant leading to a magnetic moment is identified, one must establish that the defect charge-state that has such a nonzero magnetic moment is the stable center given the actual Fermi energy $E_F(T)$.

Third step: having found how many stable moment-carrying defects or dopants exist, one must establish the range of magnetic defect-defect interaction *d* for the moment-carrying stable charge state.

Fourth step: given the defect-defect interaction range *d* determined above, one must establish the minimal percolation concentration $x_{perc}(\alpha, d)$ of defects or dopants (D,q) for the relevant lattice type α .

[1] J. Osorio-Guillén et al., Phys. Rev. Lett. **100**, 036601.

[2] J. Osorio-Guillén et al., Phys. Rev. B **75**, 184421.

First step: electronic structure calculation

 V_{Ti} introduce deep, spin-polarized levels in the gap, due to its low 3*d*-orbital energy relative to Ti. $\mu = 1 \mu_B$.

Theoretical method: a more complete methodology

First step: one must identify a defect or dopant that has, in isolation, a non-vanishing magnetic moment.

Second step: once an isolated defect or dopant leading to a magnetic moment is identified, one must establish that the defect charge-state that has such a nonzero magnetic moment is the stable center given the actual Fermi energy $E_F(T)$.

Third step: having found how many stable moment-carrying defects or dopants exist, one must establish the range of magnetic defect-defect interaction *d* for the moment-carrying stable charge state.

Fourth step: given the defect-defect interaction range *d* determined above, one must establish the minimal percolation concentration $x_{perc}(\alpha, d)$ of defects or dopants (D,q) for the relevant lattice type α .

[1] J. Osorio-Guillén et al., Phys. Rev. Lett. **100**, 036601.[2] J. Osorio-Guillén et al., Phys. Rev. B **75**, 184421.

Second step: (a) LDA/GGA supercell calculations of defect formation energy ΔH

$$\Delta H_{\mathrm{D},q}(\mu, E_{\mathrm{F}}) = \begin{bmatrix} E_{\mathrm{D},q} - E_{\mathrm{host}} \end{bmatrix} + \begin{bmatrix} \mu_{\mathrm{host}} - \mu_{\mathrm{D}} \end{bmatrix} + q \cdot E_{\mathrm{F}}$$
Supercell total energies
Atomic chemical potentials
Electron chem. potential

Corrections to LDA-supercell calculations [1]		due to
•	Band gap correction ΔE_{VBM} , ΔE_{CBM}	LDA
•	Shallow donor/acceptor correction	LDA
•	Band-filling (Moss-Burstein shift) of shallow defects	supercell
•	Potential alignment for charged defects	supercell
•	Image charge correction for charged defects	supercell

[1] C. Persson et al., Phys. Rev. B 72, 035211.

Second step: given the calculated ΔH , what can we learn?

- Equilibrium defect/dopant densities as function of T_{growth} , μ_{α} (sample all possible growth conditions)
- Calculate, not assume equilibrium Fermi level
- Which growth conditions optimize desired doping?
- Which growth conditions minimize compensation?
- Compound properties (e.g. TiO₂)
 "Natural" non-stoichiometry
 "Natural" Fermi level

Second step: Le Chatelier's principle for doping

A perturbation of a system at equilibrium shifts the thermodynamic variables into a direction that counteracts the perturbation

How to deal with the feedback due to Le Chatelier's principle? \rightarrow Find equilibrium E_F and a self-consistent solution!

Second step: defect – carrier charge feedback method

Defect formation energy

Defect concentration

Electron/hole density

Charge neutrality

Self-consistent solution

 $\Delta H = \Delta H_{D,q} (\mu, \boldsymbol{E}_{\mathbf{F}})$ $c_{D} = N \times \exp(-\Delta H/kT)$ $c_{e} = \int f_{FD}(E - \boldsymbol{E}_{\mathbf{F}}) g(E) dE$ $- c_{e} + c_{h} + S [q \times c(D^{q})] = 0$ $\Delta H(\boldsymbol{E}_{\mathbf{F}}) \longrightarrow c_{D}(\Delta H) \longrightarrow \boldsymbol{E}_{\mathbf{F}}$

"freeze" defect densities of T_{growth} , recalculate E_{F} for room temperature

 $T_{\text{growth}} \rightarrow \text{RT}$

Second step: temperature and pressure dependent gas phase chemical potentials, e.g. O_2 : $\mu_0 = \mu_0(T,P)$

Solid phase (e.g., Ti-metal): $\mu_{Ti}^{elem} = E_{tot}(hex-Ti)/N$ Gas phase (e.g., O₂): $\mu_O(T,P) = \frac{1}{2}[E_{tot}(O_2) + (H_0^{-298K} + \Delta H) - T(S_0^{-298K} + \Delta S) + kT\ln(P/P_0)]$

Use
$$H_0^{298K}$$
, S_0^{298K} , and
ideal gas law for $T > 298K$
 $C_p = 3.5k_B$
 $\Delta H = C_p(T-T_0)$
 $\Delta S = C_p \ln(T/T_0)$

Theoretical method: a more complete methodology

First step: one must identify a defect or dopant that has, in isolation, a non-vanishing magnetic moment.

Second step: once an isolated defect or dopant leading to a magnetic moment is identified, one must establish that the defect charge-state that has such a nonzero magnetic moment is the stable center given the actual Fermi energy $E_F(T)$.

Third step: having found how many stable moment-carrying defects or dopants exist, one must establish the range of magnetic defect-defect interaction *d* for the moment-carrying stable charge state.

Fourth step: given the defect-defect interaction range *d* determined above, one must establish the minimal percolation concentration $x_{perc}(\alpha, d)$ of defects or dopants (D,q) for the relevant lattice type α .

[1] J. Osorio-Guillén et al., Phys. Rev. Lett. **100**, 036601.[2] J. Osorio-Guillén et al., Phys. Rev. B **75**, 184421.

Third step: range of interaction of two V_{Ca}-V_{Ca} in CaO

Third step: range of interaction of two V_{Hf}-V_{Hf} in HfO₂

TABLE I. Calculated ferromagnetic stabilization energy $(\Delta E_{FM} = E_{AFM} - E_{FM})$ as a function of Hf vacancy pair distance (d_{ij}) .

R _n	d _{ij} (Å)	$\Delta E_{\rm FM}$ (meV)
R_{1aNN}	3.425	205
R_{1bNN}	3.437	66
R_{3NN}	4.538	51
R _{5NN}	5.937	39

Range of interaction is $\leq 5 \text{ NN}$

Third step: range of interaction of two V_{Hf}-V_{Hf} in TiO₂

GGA predicts a range of interaction ≤ 5 NN.
GGA+U predicts a shorter range of interaction.

Theoretical method: a more complete methodology

First step: one must identify a defect or dopant that has, in isolation, a non-vanishing magnetic moment.

Second step: once an isolated defect or dopant leading to a magnetic moment is identified, one must establish that the defect charge-state that has such a nonzero magnetic moment is the stable center given the actual Fermi energy $E_F(T)$.

Third step: having found how many stable moment-carrying defects or dopants exist, one must establish the range of magnetic defect-defect interaction *d* for the moment-carrying stable charge state.

Fourth step: given the defect-defect interaction range *d* determined above, one must establish the minimal percolation concentration $x_{perc}(\alpha, d)$ of defects or dopants (D,q) for the relevant lattice type α .

[1] J. Osorio-Guillén et al., Phys. Rev. Lett. **100**, 036601.

[2] J. Osorio-Guillén et al., Phys. Rev. B 75, 184421.

Fourth step: minimal percolation concentration

For each structure, we find the smallest radius R_P around a sublattice site that causes percolation in 3D:

Finite-size analysis of Monte Carlo simulations

Fourth step: minimal percolation concentration for CaO

Fourth step: minimal percolation concentration for HfO₂

Fourth step: minimal percolation concentration for TiO₂

- Cation vacancies introduce spin-polarized gap states in CaO and HfO₂, leading to FM V-V coupling with interaction range ≤ 4NN and 5NN, respectively. However, the moment-carrying vacancy concentration falls very short to promote collective ferromagnetism.
- 2. V introduces spin-polarized gap state in TiO_2 , leading to FM V-V coupling with interaction range 5NN.
- 3. V solubility in TiO_2 is above the magnetic percolation threshold.