Ab initio molecular dynamics of CdTe oxides

Eduardo Menéndez Proupin(1), P. Giannozzi(2) J. Peralta(1) y Gonzalo Gutiérrez(1)

(1) Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653,

Santiago, Chile

(2) Universidad de Udine, Italia

Supported by

FONDECYT 1050293 y 7060248 y ACT24/2006.

Abdus Salam International Centre for Theoretical Physics.

Introduction

- CdTe:O thin films grown by *r.f. sputtering*.
- Possible windows material for CdTe/CdS solar cells..
- In-doped CdTeO₃ is a transparent conducting oxide.
- Cd_3TeO_6 is n-type semiconductor.
- The amorphous order is a challenge for understanding the material.

R.f. sputtering

r	•	1
21	r1 9)
a	10	1

132

MY El Azhari et al. / Thun Solud Films 295 (1997) 131-136

Table 1

Sample deposition parameters

Sample	Pressure (mbar)			Power	Target
	O ₂	N ₂	Ar	(mw cm ⁻)	(V)
X10A1 ª	4.0×10 ⁻⁵	1.6×10 ⁻⁴	9.8×10 ⁻³	159	-600
X11A1 ^a	4.0×10 ⁻⁵	1.6×10^{-4}	9.8×10 ⁻³	159	- 600
X11A2	4.0×10^{-5}	96×10 ⁻⁴	90×10 ⁻³	159	-600
X11A3	4 0×10 ⁻⁵	5.0×10^{-3}	5.0×10 ⁻³	159	- 600
X11A4 ^b	40×10^{-5}	9.9×10 ⁻³	≅0	159	- 600
X11G1 a	4.0×10^{-5}	1.6×10^{-4}	9.8×10 ⁻³	159	- 600
X11G3 ª	40×10^{-5}	1.6×10^{-4}	98×10 ⁻³	159	- 600
X11G4 ª	4.0×10^{-5}	1.6×10^{-4}	98×10 ⁻³	159	- 600

Fig. 1. X-ray diffraction patterns for some representative CdTe:O samples.

X-ray diffraction. M.Y. El Azhari et al., Thin Solid Films 295, 131 (1997).

2 2

Ab initio molecular dynamics of CdTe oxides - p. 6/3

Goal

To produce structural models of CdTeO_x. Tool: *ab initio* molecular dynamics.

Statistical mechanics

The observed magnitudes in a macroscopical system are the average of these magnitudes in the ensemble of microstates compatible witht en macrostate.

Microestado:

$$\Gamma = \{\vec{r}_1, \vec{r}_2, ..., \vec{r}_N, \vec{p}_1, \vec{p}_2, ..., \vec{p}_N\}$$

Macroestado: P, V, T, \vec{M} .

Magnitud macroscópica observada $A_{obs} = \langle A \rangle = \frac{\sum_{\Gamma} A(\Gamma)}{\sum_{\Gamma} 1} = \sum_{\Gamma} P(\Gamma) A(\Gamma).$

Molecular dynamics

It is a method to generate a sequence of microstates $\{\Gamma_n\}$. It is based on the Newton equations:.

Solved by finite difference methods..

Our system

Snapshot of a configuration of CdTeO.

Periodical boundary conditions.

Verlet algorithm

$$\vec{r}(t + \Delta t) = 2\vec{r}(t) - \vec{r}(t - \Delta t) + (\Delta t)^2 \vec{a}(t), \quad \vec{a} = \frac{\vec{f}}{m}$$

The velocities, if needed to calculate a property, can be obtained from

$$\vec{v}(t) = \frac{\vec{r}(t + \Delta t) - \vec{r}(t - \Delta t)}{2\Delta t}$$

¿How to calculate the forces?

- Empirical force-fields.
- Quantum mechanics (our choice).

Density Functional Theory

Is an approximate solution to the real problem of finding the electronic density in a multielectron system.

$$\langle -\nabla^2 + V_{eff} \rangle |\phi_i\rangle = \epsilon_i |\phi\rangle, \quad n(\mathbf{r}) = \sum_i |\phi_i(\mathbf{r})|^2$$

$$V_{eff}(\mathbf{r}) = V_{ext}(\mathbf{r}) + \int dr' \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + v_{xc}(\mathbf{r})$$

 $n(\mathbf{r}) \Longrightarrow$ Energy, forces, stress tensor, ...

Exchange-correlation potential
$$v_{xc}(r) = \frac{\delta E_{xc}}{\delta n} = \left. \frac{\partial}{\partial n} (ne_{xc}(n)) \right|_{n=n(n)}$$

r)

Example: LDA

$$E_{xc}^{LDA}[n] = \int e_{xc}[n(r)] n(r) d^{3}r,$$

$$v_{xc}(r) = \frac{\delta E_{xc}^{LDA}}{\delta n} = \frac{\partial}{\partial n} (ne_{xc}(n)) \Big|_{n=n(r)}$$

$$e_{xc}(n) = e_{x}^{hom}(n) + e_{c}^{hom}(n),$$

$$e_{x}^{hom}(n) = -(81/64\pi)^{1/3} n^{1/3},$$

 $e_c^{
m hom}$ is a function fitted to QMC results for the homogeneous electron gas

$$e_c^{\text{hom}}(n) = \begin{cases} -0.14231(1+1.0529\sqrt{r_s}+0.3334r_s)^{-1}, r_s \ge 1\\ -0.0480+0.0311\ln r_s - 0.0116r_s + 0.002r_s\ln r_s, r_s < 1 \end{cases}$$

$$n = \left(\frac{4}{3}\pi r_s^3\right)^{-1}, \qquad r_s = \left(\frac{4}{3}\pi n\right)^{-1/3}$$

...

• • • •

$$\vec{F}_I = -\int n(\vec{r}) \frac{\partial V_{ext}}{\partial \vec{R}_I} d^3 \vec{r} - \frac{\partial E_{II}}{\partial \vec{R}_I} + \vec{F}_{correc}.$$

$$\vec{F}_{correc} = -2\mathsf{Re}\sum_{i}\int \frac{\partial \psi_{i}^{*}}{\partial \vec{R}_{I}} \left[-\frac{1}{2}\nabla^{2} + V_{KS} - \varepsilon_{i}\right]\psi_{i} d^{3}\vec{r}$$
$$-\int \left[V_{KS} - V^{in}\right] d^{3}\vec{r}$$

• •

٠

٠

• •

• •

٠

•••

(1)

Computational details

- Ultrasoft type with scalar relativistic effects.
- Cutoffs: 30 Ry for wavefunctions, 180 Ry for the charge density.
- Γ point sampling.
- Fermi smearing of 0.02 Ry.
- E_{xc} of Perdew, Burke and Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- Stress tensor as Nielsen and Martin, Phys. Rev. Lett. 50, 697, 1983
- Implemented in Quantum-ESPRESSO.

Sample preparation MyPWSCF/CdTeO0.2/MD-PW/3000K/Scaling/Altix

160 140 120 100 <u>م</u> 80 60 40 20Etotal, Epot(eV/atom 849.**6** Ewith have 50 35510)4 2500T(K) 2000 1500 1000 500 500 1000 1500 2000 2500 3000 3500 4000 0

- Define supercell: volume, atoms, random initial positions.
- Heat to 3000 K rescaling velocities (3-5 ps).
- Slow annealing to 300 K using Berendsen's algorithm $v' = v \times \sqrt{1 + (T/T_i - 1)\Delta t/\tau}$. Equilibration achieved in 15-20 ps.
- Once T and E_{total} are stable, sample during last 6 ps.

Angle distribution function.

Analysis (CdTeO_{0.2}) (IV)

Atomic environments.

crystalline c-CdTe and c-CdTeO $_3$.

Coordination numbers Table 1: n_{i-j} is the average number of atoms

Table 1: . n_{i-j} is the average number of atoms of element j around one atom of element i within a sphere of radius R_{i-j} .

i-j	R_{i-j}	n_{i-j}			
		$CdTeO_{0.2}$	CdTeO	$CdTeO_2$	$CdTeO_3$
Te-O	2.32	0.1	0.7	2.1	3.4
O-Te	2.32	0.7	0.7	1.0	1.1
Cd-O	2.90	0.6	2.7	4.3	5.7
O-Cd	2.90	2.8	2.7	2.1	1.9
Cd-Te	3.19	3.1	1.6	0.7	0.2
Te-Cd	3.19	3.1	1.6	0.7	0.2
Te-Te	3.27	0.3	1.2	0.9	0.1

Is the real material?

We need to calculate properties that can be measured experimentally, such as optical spectra, and XPS spectra.

E. Menendez-Proupin et al, Phys. Rev. B 79, 014205 (2009).

Reported in

PHYSICAL REVIEW B 79, 014205 (2009)

Ab initio molecular dynamics study of amorphous CdTeO_x alloys: Structural properties

E. Menéndez-Proupin,¹ P. Giannozzi,² J. Peralta,¹ and G. Gutiérrez¹

¹Departamento de Física, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, 7800024 Ñuñoa, Santiago, Chile ²Department of Physics, University of Udine, Via delle Scienze 208, I-33100 Udine, Italy and CNR-INFM DEMOCRITOS National Simulation Center, I-34014 Trieste, Italy (Received 11 March 2008; revised manuscript received 15 November 2008; published 21 January 2009) $E_{CLS} = \Delta V + \Delta E_R$ V is the local potential on the excited atom E_R is the energy of relaxation in the final state

XPS

Amezaga, Holström, Menendez-Proupin and Lizarraga.

Conclusions

- We obtained structural models.
- Trends with oxygen content.
- Optical gap in qualitative agreement with experiments.
- XPS spectra are in semiquantitative agreement with experiments..
- Prediction of $g_{ij}(r)$ and other indicators that can be measured.

Thank you

- •••••

- •
- •
- •
- •