
Latinamerican School for

Computational Materials

Science.

Santiago, Chile - Enero, 2009

Linux cluster approachLinux cluster approach
 to parallel computingto parallel computing

Stefano Cozzini

CNR-INFM DEMOCRITOS, Trieste

2

AgendaAgenda

Parallel computing: a few ideas

Linux clusters for parallel computing?

Hardware bricks for Linux Clusters

Software stack

How/where/when to choose a Linux
Cluster ?

Parallel Programming ParadigmsParallel Programming Paradigms

The two architectures determine two basic schemes
for parallel programming

 Data Parallel (shared memory)

Single memory view, all processes (usually threads) could
directly access the whole memory

 Message Passing (distributed memory)

 all processes could directly access only their local memory

Its easy to adopt a Message Passing scheme in a Shared Memory
computers (unix process have their private memory).

Its less easy to follow a Data Parallel scheme in a Distributed
Memory computer (emulation of shared memory)

Architectures vs. ParadigmsArchitectures vs. Paradigms

Shared Memory
Computers Distributed Memory

Computers

Message Passing

Data Parallel
Message Passing

Clusters of Shared Memory Nodes

Parallel programming: a short Parallel programming: a short
summary.. summary..

Architectures

Functional DecompositionDomain Decomposition

Parallel Programming Models

Data ParallelMessage Passing

Programming Paradigms/Environment

Shared MemoryDistributed Memory

Parallel Programming Paradigms, Parallel Programming Paradigms, cont.cont.

Standard Unix shell to run the
program

Ad hoc commands to run the
program

Source code DirectiveCommunication Libraries

Ad hoc compilersStandard compilers

Standards: OpenMPStandards: MPI

Shared MemoryMessage Passing

Programming Environments

 Message passing paradigm Message passing paradigm

● Parallel programs consist of separate processes, each
with its own address space

– Programmer manages memory by placing data in a
particular process

● Data sent explicitly between processes

– Programmer manages memory motion

● Collective operations

– On arbitrary set of processes

● Data distribution

– Also managed by programmer

Distributed memory (shared nothing Distributed memory (shared nothing
approach) approach)

Principles of Parallel ComputingPrinciples of Parallel Computing

● Speedup, efficiency, and Amdahl’s Law
● Finding and exploiting parallelism
● Finding and exploiting data locality
● Load balancing
● Coordination and synchronization
● Performance modeling

All of these things make parallel programming
more difficult than sequential programming.

SpeedupSpeedup

● The speedup of a parallel application is
Speedup(p) = Time(1)/Time(p)

● Where
– Time(1) = execution time for a single processor
– Time(p) = execution time using p parallel processors

● If Speedup(p) = p we have perfect speedup (also called
linear scaling)

● speedup compares an application with itself on one and on
p processors

● more useful to compare
– The execution time of the best serial application on 1

processor
 versus

– The execution time of best parallel algorithm on p processors

EfficiencyEfficiency
● The parallel efficiency of an application is

defined as
Efficiency(p) = Speedup(p)/p

– Efficiency(p) <= 1
– For perfect speedup Efficiency (p) = 1

● We will rarely have perfect speedup.
– Lack of perfect parallelism in the application or algorithm
– Imperfect load balancing (some processors have more work)
– Cost of communication
– Cost of contention for resources, e.g., memory bus, I/O
– Synchronization time

● Understanding why an application is not scaling
linearly will help finding ways improving the
applications performance on parallel computers.

Superlinear SpeedupSuperlinear Speedup

Question: can we find “superlinear” speedup,
that is

Speedup(p) > p ?

• Choosing a bad “baseline” for T(1)
• Old serial code has not been updated with optimizations
• Avoid this, and always specify what your baseline is

• Shrinking the problem size per processor
• May allow it to fit in small fast memory (cache)

• Application is not deterministic
• Amount of work varies depending on execution order
• Search algorithms have this characteristic

Amdahl’s LawAmdahl’s Law
● Suppose only part of an application runs in

parallel
• Amdahl’s law

– Let s be the fraction of work done serially,
– So (1-s) is fraction done in parallel
– What is the maximum speedup for P processors?

Speedup(p) = T(1)/T(p)

T(p) = (1­s)*T(1)/p +s*T(1)

 = T(1)*((1­s) + p*s)/p

Even if the parallel part speeds up perfectly, we may
be limited by the sequential portion of code.

Speedup(p) = p/(1 + (p­1)*s)

assumes
perfect
speedup for
parallel part

Serial components Serial components
● Code executed by a single process:

 if (rank == 0) { ... }
● IO through a single process
● Operations done redundantly on local copies

of redundant data serial fraction:

Ahmdal law in practice..Ahmdal law in practice..

● parallel overhead:
– Any operations not in the serial code

– Number of such operations often increases with N cpus

– Any message passing or synchronization

– Extra redundant computation

– Algorithm changes

– Extra system overhead, e.g. forking threads for
threaded libraries

Amdahl’s law(2)Amdahl’s law(2)

● Which fraction of serial code(parallel
overhead) is it allowed ?

> 2 4 8 32 64 256 512 1024

5% 1.91 3.48 5.93 12.55 15.42 18.62 19.28 19.63
2% 1.94 3.67 6.61 16.58 22.15 29.60 31.35 32.31

1% 1.99 3.88 7.48 24.43 39.29 72.11 83.80 91.18

What about Scalability ???

20/01/09 17

Problem scaling.. Problem scaling..
● Amdahl’s Law is relevant only if serial fraction is

indipendent of problem size, which is rarely true
● Fortunately “The proportion of the computations that are

sequential (non parallel) normally decreases as the
problem size increases ” (a.k.a. Gustafon’s Law)

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Processors

Sp
ee

d­
up

lineare

64

192

320

512

Real parallel programs Real parallel programs

About network for clusters About network for clusters

● The characteristics of the network cannot be
ignored

– Topology
● Diameter
● Bisection bandwidth

– Performance
● Latency
● Link bandwidth

Interconnect Topologies Interconnect Topologies

● Bus

– Nodes share a "party line".

– Not very common any more, except between processors and
memory inside a host.

● Hypercube–SGI Origin and Altix

– Nodes are vertices on an n-dimensional hypercube.

● Mesh–Cray T3D/E and XT-3/4/5, IBM BlueGene

– A 1D mesh with wrap-around at the edges is called a ring.

– A 2D (or more) mesh with wrap-around at the edges is called a
torus.

● Switched–Ethernet, Infiniband, Myrinet,

– Nodes are connected to a concentrator called a switch.

– Multiple switches may be connected hierarchically (i.e. as a
tree) or in any of the above topologies.

Interconnect Characteristic Interconnect Characteristic

● Latency: Initialization time before data can be
sent

● Per­link Peak Bandwidth: Maximum data
transmission rate (varies with packet size)

● Diameter: Maximum number of hops to get
between most distantly connected nodes.
– Hypercube networks have best diameter, at most

log 2(N) for N nodes.

● Bisection Bandwidth: Bandwidth available if
one half of nodes try communicating with the
other half simultaneously.
– Torus networks typically have the best bisection

bandwidth.

Which networks for Linux Cluster ? Which networks for Linux Cluster ?

● Difficult choice:
– Which kind of cluster (HTC or HPC) ?
– Which kind of application ?

● Serial/Parallel
● Parallel loosely coupled / tightly coupled ?
● Latency or bandwidth dominated ?

– Budget considerations
– I/O considerations

● High Speed Network
– Myrinet

– Infiniband

–

●

●

–

–

–

● Commodity
– Gigabit Ethernet

HPC cluster logical structureHPC cluster logical structure

Intranet
Master N.

…
…
…
Worker N.

IPC network

I/O network

Internet

Manag. network

Access N.

…
…
…
Worker N.

Luxury clusters: 3 networksLuxury clusters: 3 networks

● HIGH SPEED NETWORK
– parallel computation

● low latency /high bandwidth
● Usual choices: Myrinet/SCI/Infiniband...

● I/O NETWORK
– I/O requests (NFS and/or parallel FS)

● latency not fundamental/ good bandwidth
● GIGABIT is ok

● Management network
– management traffic

● any standard network (fast ethernet OK)

Interconnect Characteristics: Interconnect Characteristics:

● Latency: Initialization time before data can be
sent

● Per-link Peak Bandwidth: Maximum data
transmission rate (varies with packet size)

● To measure it:
– IMB benchmark : it will be use later in the lab..

Sissa cluster: latency Sissa cluster: latency

Sissa number: bandwidthSissa number: bandwidth

high speed network considerationshigh speed network considerations

● In general the compute/communication
ratio in a parallel program remains fairly
constant.

● So as the computational power increases
the network speed must also be increased.

● As multi-core processors proliferate, it is
increasingly common to have 4, 8, or even
16 MPI processes sharing the same
network device.

● Contention for the interconnect device can
have a significant impact on performance.

Linuux Cluster: the software stacksLinuux Cluster: the software stacks

Linux Cluster: the sys. Adm. stacksLinux Cluster: the sys. Adm. stacks

31

Middleware Design GoalsMiddleware Design Goals

● Complete Transparency (Manageability):
– Lets the see a single cluster system..

● Single entry point, ftp, ssh, software loading...

● Scalable Performance:
– Easy growth of cluster

● no change of API & automatic load distribution.

● Enhanced Availability:
– Automatic Recovery from failures

● Employ checkpointing & fault tolerant technologies

– Handle consistency of data when replicated..

Cluster middleware: beowulf approachCluster middleware: beowulf approach
● Administration software:

– NFS
– user accounts
– NTP

● Resource management and scheduling software
(LRMS)
– Process distribution
– Load balance
– Job scheduling of multiple

 tasks

server
client

client

client

Cluster Management Toolkits Cluster Management Toolkits
● Are generally made of an ensemble of already available

software packages thought for specific tasks, but configured to
operate together, plus some add-ons.

● Sometimes limited by rigid and not customizable configurations,
often bound to some specific LINUX distribution and version.

May depend on vendors' hardware.
● Free and Open

– OSCAR (Open Source Cluster Application Resources)

– NPACI Rocks

– xCAT (eXtreme Cluster Administration Toolkit)

– Warewulf

● Commercial

– Scyld Beowulf

– IBM, HP, SUN and other vendors' Management Software...

Cluster Pro&ConsCluster Pro&Cons
● Pro:

– Price/performance when compared with a dedicated parallel
supercomputer

– Great opportunity for low budget institution

– Flexibility: many ad hoc solution for different problems..

– Open Technology

● What you learn in this business can be used everywhere..

● Cons:
– It is hard to build and operate medium and large cluster

● Large collection of software that are not “talk to each
other”

– Lot of expertise needed (no plug and play yet)

– How to use cluster power efficiently

Which cluster do I need ? Which cluster do I need ?
● Which applications ?

– Parallel
● Tightly coupled
● Loosely coupled

– Serial
● Memory / I/O requirements

● Which user's community ?
– Large /Small
– Homogeneous /heterogeneous

– Understand your computational problem before
buying/building a cluster !

– Run your own benchmarks before buying/building a
cluster !

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	message passing paradigm
	distributed memory (shared nothing) approach
	Principles of Parallel Computing
	Speedup
	Efficiency
	Superlinear Speedup
	Amdahl’s Law
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	vantaggi
	Slide 35

