
Latinamerican School for

Computational Materials

Science.

Santiago, Chile - Enero, 2009

from source code to running from source code to running
application..application..

Stefano Cozzini

CNR-INFM DEMOCRITOS, Trieste

2

AIMAIM

● examine how to go from a piece of source code to a
running application

● Discuss:
– which programming languages are available (briefly)

– what is a compiler and how it works

– different stages involved in the process of compiling

– how a program actually runs

● Motivation: the interaction between application and
the system is often poorly understood but a greater
knowledge can be helpful to efficient scientific
software development

3

Programming languagesProgramming languages

● choice of language for a given task is often a
thorny issue.

● For us: a programming language is only a tool
for writing scientific code.

● The computer language that you use will
hopefully be the one that best facilitates this
task.

● Many differences between high level language
which may be viewed as advantages or
disadvantages depending on the task you are
trying to solve.

4

Interpreted languages Interpreted languages
● An interpreter is a program which itself executes

other programs. Examples:
– Basic, JavaScript, Perl and awk

● Advantages:
– it can be quicker to run the code under the interpreter

than compile and run it with a compiler.

– code is easier to debug (interpreter will analyze each
statement in the code each time it is executed.)

● Where to use interpreted languages:
– for small applications prototyping and testing of code

when an edit-interpret-debug cycle can often be much
quicker than an edit- compile-run-debug cycle.

● NOT a good idea to perform numerically intensive
calculations using interpreted languages.

5

compiled languages compiled languages

● Needed to perform numerically intensive
calculations

● Run Time >> Compiling/debugging time

● Examples:
– Fortran

– C

– C++

– Java

– Others ?

6

FortranFortran

● The main language within the scientific
community

● It is likely to hold this position for a long time.

● Why ?
– Some issues within C that make the language

inherently more difficult to compile and produce
good optimization (mainly dynamical d-referencing of
pointers).

– Tons of libraries written in Fortran

– Tons of computational codes written in F77

– laziness of users (especially Sissa users)

C for scientific computingC for scientific computing

● C works well in many domains: graphics, I/O,
O.S. world

● C issues such as pointer aliasing makes difficult
for compilers to produce highly optimised code.

● Other limits in numerical computation:
– 1. complex arithmetic is missing

– 2. F90 array notation is missing

– 3. Tons of numerical software is written in F77/90

● Interested in C ? check out http://www.accu.org.

C++C++

● C++ developed by Bjarne Stroustrup in 1983.

● C++ was initially an extension to C to incorporate
full object-oriented(OO)programming techniques.

● C can be regarded as a subset of C++, so a C++
compiler will (hopefully) be able to compile a C
code to achieve the same performance.

● The main design aim of C++ is to design and
build large applications using OO techniques.

● However performance can drop if you use OO
without care..

● Interested in OO ? Use this language, calling a
Fortran library for the more intensive work.

Why Compilers?Why Compilers?

● Compiler
– A program that translates from 1 language to another
– It must preserve semantics of the source
– It should create an efficient version of the target language

● In the beginning, there was machine language
– Ugly – writing code, debugging
– Then came textual assembly – still used on some devices..
– High-level languages – Fortran, Pascal, C, C++
– Machine structures became too complex and software

management too difficult to continue with low-level languages

Knowing your compiler Knowing your compiler

● Calling a compiler you invoke a driver
program that hides the different compilation
stages.

● You can use compiler flags to show all the in-
between stages and/or output intermediate
results from any of these stages.

● These flags tends to be compiler dependent

Example: to show all the gory details
of the intermediate stages for gcc
cc -v -o myprogram myprogram.c

Proposed exercise: Proposed exercise:

● know your preferred compiler

● Have a look at the man page to identify flags
to:
– check syntax

– change the levels of optimisation

– identify the compilation stages (trough
intermediate output)

compilation steps (1) compilation steps (1)

A word of caution... A word of caution...

● The terminology here might be slightly
confusing as we are using the term compiler in
two ways
– the compilation process is what will take source

code and produce executable machine code.

– In the diagram above we use "compiler" to
encompass just a step of the procedure:

– This is composed by following four stages:
● 1. lexical analysis;
● 2. syntax and
● 3.semantic analysis;
● 4. Intermediate Level Code (ILC) generation.

Using a preprocessor Using a preprocessor

● C files are automatically pre-processed before they
are passed to the front end of the compiler.

● You can output preprocessed files (*.i suffix) using
-P -E

● To preprocess Fortran files use *.F (fixed) or *.F90
(free) extensions for the source files.

● Preprocessing can be done explicitly by cpp, or fpp
or using embedded preprocessor that comes with
the F90 compiler itself.

Using a preprocessor (2) Using a preprocessor (2)
● Typically preprocessors perform mainly text based

manipulations.

● Preprocessor commands (known as "pragmas" in
C) always begin with #, (#include, #define,#ifdef)

● It is possible to use the same preprocessor for
Fortran programs and the # must be located in the
first character position.

● These commands instruct the preprocessor to:
– include external (header) files conditionally

– enable source code compilation

– perform textual substitution (expansion on
Macro/embedding constant)

Using cpp preprocessor with Fortran Using cpp preprocessor with Fortran
code:code:

● Cpp replace C comments (/* ...*/) by single
spaces, backslash-newline combinations are
deleted

● You must bear this in mind when using cpp to
process Fortran programs to avoid some
strange behaviour

● Try to use fpp .. (man fpp)

conditional compilation (an example)conditional compilation (an example)

● to comment out sections of code, possibly
machine specific:

● The code will be compiled: at compile time
by adding #define X86_64 at the top of the
relevant source file or in a generic header file
from the command line:

 >cc -DX86_64 ...

#ifdef X86_64
 /* Opteron specific code */
 #endif

● Great tools: very useful (portability)

● However: for the sake of clarity, do not overuse
#ifdef.

● TIP: If you find that you have a lot of different
options it might be better to separate the
source code into separate files and then use
make to perform the required compilation.

Preprocessing: final considerationsPreprocessing: final considerations

Compiler stagesCompiler stages

● The front end stages:
– several front end (each for any language)

– each of one produce the ILC (portable)

● the back-end stage
– produce machine-specific assembler code then to re-

locatable object code.

● the linker stage:
– link together all the pieces to produce the executable

a picture to helpa picture to help

Lexical Analysis

Syntax Analysis

Semantic Analysis

Controlflow/Dataflow

Code Generation

Source
Program

Assembly
Code

Scanner

Parser
Context

Symbol Table

CFG

Front end (Compiler)

Back end (assembler)

Intermediate Code generation

Semantic Analysis

Optimization

Machine dependent
Optimization

the frontend stages: analysis the frontend stages: analysis

● done on a file-by-file basis as independent
compilation

● can perform its tasks in one pass or multiple
passes

● process is complex and specialised.

● you have no access to this section but.. the
tasks it attempts to perform may be
controllable by flags

The front-end: actionsThe front-end: actions

● first: The parser, syntax and semantic analysis removes
unnecessary white spaces and any remaining comments.

● second: The source code is split into "tokens":

● third: syntax checker makes sure that each is a valid
construct (The majority of the errors that are detectable by
the compiler are caught here)

● fourth: The code generator produces the ILC output.

● fifth: the The code optimiser attempts to optimise the ILC

● check man pages to see which flags are available and what
they do:

– enforcing strict syntax checking

– looking for un-used variables etc..

OptimizationOptimization

● How to make the code go faster
● Classical optimizations

– Dead code elimination – remove useless
code

– Common subexpression elimination –
recomputing the same thing multiple times

● Machine independent (classical)
– Focus of this class
– Useful for almost all architectures

● Machine dependent
– Depends on processor architecture
– Memory system, branches, dependences

Optimization (2) Optimization (2)

● Compilers do many different transformations
to produce fast code

● Some of them could be controlled by flags on
the command line

● This is not always straightforward (complex
inter-dependencies)

● To increase performance play with flags..
(learn a lot about that next lecture...)

● Check out results are still correct.

Symbol TableSymbol Table
● produced by compiler and used by the linker to find

the information required to build the whole code.

● Like a dictionary that records each identifier or
keyword found:

– the type (variable, array, procedure, . . .)

– the data type (integer,real, . . .)

– the run-time address pointer to access more
information (like the bounds of an array, . . .

● The symbol table is very important for debugging.

● Debuggers use a more complete symbol table with
every variable listed and references to the source
lines where they are modified.

● This is generally produced with the -g flag.

The assembler The assembler

● the assembler creates object files from assembly language
source files

● Some specific operations:

– Anything that cannot be handled by hardware must be done in
software:mathematical operations such as inverses, cosines and
square roots.

– Resource conflicts e.g. use of registers, pipelines, etc. must be
resolved.

● The assembler code is then converted to relocatable object code
by the assembler. (A relocatable object file can be loaded starting
at any location in memory)

● It is then added to all the addresses in the object file, so the
object file could be loaded into any location in memory by the
Unix operating system.

the linkerthe linker
● All the different object files are finally glued

together by the linker.

● to know about it : man ld (very system specific)

● Actions:
– identifies the main routine as the initial entry point

when execution begins.

– resolves subroutine and identifies function calls by
putting in the correct addresses

– identifies and branch statements and instructions to
copy arguments onto the stack.

– If there are any unresolved symbols it will then try to
link in any external libraries which have been
specified and default ones from the system.

● The result is an executable file:
 a(ssembler).out(put)

Linker (2) Linker (2)

● Error messages are printed if there are
remaining unresolved symbols.

● Solution: add the maths library at the end of
the compilation process:

Where are the libs ? Where are the libs ?

● Standard places are searched if you use standard
libraries [/usr/lib /usr/local/lib]

● check out the LD_LIBRARY_PATH env variable

● Otherwise: explicitly specify the path to the
library and the name of that library:
-L/Path_to_library -lmpi

● this refers to a library file called:
– /Path_to_library/libmpi.s (shared) o (bject)

– --> (dynamic library)

– /Path_to_library/libmpi.a(rchive) [see ar command]
 --> (static library)

Static vs Dynamic libraries...Static vs Dynamic libraries...

● Dynamic libraries the external reference will
not be resolved until the code starts running
and even then the linking will not take effect
until an actual call is made to the routine
requiring that library.

● Static libraries the actual code to execute the
external routine will be physically copied into
your executable. This is the way that linking
used to always be done.

● There are advantages/disadvantages to both
methods

Static libraries: *.a (from archive Static libraries: *.a (from archive
command [man ar])command [man ar])

● pro:
– Libraries are physically copied into the process space

which can produce marginally faster code with no
dynamic linking overhead and better linking
optimisation.

● cons:
– Wasteful: every user can have their own private copy

of library routines linked into executable on disk

Dynamic libraries: have a *.so Dynamic libraries: have a *.so
extension.extension.

● PRO:
– Libraries are linked in dynamically at run time which means you

will have a smaller executable

– One copy of a library can be used by more than one process if it
is running on the same machine => better use of memory
resources.

– The latest version of a library will be linked in at run time or if
different systems are available it may be possible to have
libraries optimised for that system you are running on
dynamically linked.

● CONS:
– Changes in library locations, version number conflicts or

missing libraries can lead to cryptic run time failures.

– There is a small associated overhead with the dynamic linking
of libraries

typical issue with dynamic libraries typical issue with dynamic libraries

● the dynamic linker cannot find the dynamic
libraries requested or licenses for them, e.g.:

● How to overcome this problem ? use ldd

● ldd lists the dynamic dependencies expected by
an executable files or shared objects and the
location of where it is expecting to find these
libraries.

 > ./hello
 ld.so.1: ./hello: fatal: libmpi.so.1: open failed: No such file or directory
 Killed

[cozzini@bubez cozzini]$ ldd -v /usr/bin/who
libc.so.6 => /lib/i686/libc.so.6 (0x40022000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

Run the program..Run the program..

● what is an executable ?

 just a regular file that knows how to initialise a
new execution context.

● Check with the file command

●
[cozzini@bubez cozzini]$ file h_din.x
h_din.x: ELF 32-bit LSB executable, Intel 80386, version 1, dynamically linked
(uses shared libs), not stripped

a word about memory: segments a word about memory: segments

● The shell will use execve to fork a new Unix
process. Parts of the binary file will then be
mapped directly to memory by the loader. To
make this easier the executable is divided into
segments some of which are shared by the Unix
process:
– executable magic number

– executable internals

– Text segment (process)

– Data Segment (process)

– size for bss segment (process)

– stack (only in the process)

– heap (only in the process)

●

● stack segment:
– is allocated at run time and used to store automatic

variables and arrays (created when one goes into a
subroutine) and keep track of stack frames for
procedure calls. It is a temporary piece of scratch
space but has a fixed size.

● heap segment:
– is allocated at run time and used for data declared

dynamically such as that created by statements such
as Fortran ALLOCATE or C malloc and calloc. It also
has a fixed size and the return values of these calls
must be tested to ensure that it is not exceeded or
errors will occur (probably a segmentation fault, see
later).

Stack and heap segment Stack and heap segment

stack size sometime too small..stack size sometime too small..

● symptome: a code runs well but when you
increase data size it gives : segmentation fault

● to check if this is related to stack size :
– check the size of your stack on the computer (ulimit

command)

– check where data are allocated by your program

[cozzini@bubez lezioni_sissa]$ nm -f s a.out | grep array
array1 |08049540| D | | | |
array2 |080497e0| B | | | |

cozzini$ ulimit -s
8192

trace/strace commandtrace/strace command

● See the interaction between your program and
the Unix kernel

● very useful to understand where and why your
program fails due to external problems

● Output very long and complex...

[cozzini@bubez lezioni_sissa]$ strace ./a.out
execve("./a.out", ["./a.out"], [/* 37 vars */]) = 0
uname({sys="Linux", node="bubez", ...}) = 0
brk(0) = 0x8049970
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0
x40017000
open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=40472, ...}) = 0
old_mmap(NULL, 40472, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40018000
close(3) = 0

20/01/09 Laboratorio di Linux Clusters

Compilers for Linux Compilers for Linux

● Free/Open Source:
● GNU http://www.gnu.org/ (Fortran 77, C, C++, ...)

● Commercial:
– PGI (Fortran 77, Fortran 90, C, C++) http://www.pgroup.com/
– Intel (Fortran 77/95, C/C++) (individual Linux license free of charge)
– PathScale (Fortran 77, Fortran 90, C, C++) http://www.pathscale.com

(x86_64)
– NAG http://www.nag.co.uk
– Lahey http://www.lahey.com/
– Absoft http://www.absoft.com/

● Almost all allow you a 15 day evaluation license

http://www.nag.co.uk/
http://www.lahey.com/
http://www.absoft.com/

How to choose a compiler for scientific How to choose a compiler for scientific
computing? computing?

● Efficiency

– Does it produce efficient code?

– Does it produce correct code?

– Is it able to exploit the hardware?

● Availability/Cost

– How much does it differ from the GNU compilers?

● Interoperability

– Does it operate with other tools/compiler/languages?

● Utilities / Tools

– Does it have a Debugger/ Profiler / other utilities?

● Diagnostic Capabilities

– Is it able to detected errors/bugs in programs?

● Documentation/ support /training..

Gnu compiler collection Gnu compiler collection

● The Cross-Platform compiler package

● Supports many OS/CPU combinations

● Already bundled with Linux distributions

● Support for C/C++ good

● Fortran 77 support limited (performance,
completeness

● Fortran 95 available from version 4.x (gfortran)

● Debugger, several GUI frontends

● Profiler, GUI frontends

● Many additional, supporting tools available

the PGI suitethe PGI suite

● Widespread (for a long time only alternative to GNU)

● Platforms: x86 and x86_64, for Linux, Win32 and Solaris

● Native OpenMP Support

● Good Fortran 77/90/95 support

● GNU Interoperability: can link g77 libraries&

● Advanced Optimizations: IPO and PGO

● PGDBG graphical debugger

● PGProf: graphical profiler

● Extensive online documentation

● Precompiled libraries come bundled (usage not
recommended)

The intel suiteThe intel suite
● Personal non-commercial license for Linux at no

cost

● Platforms: x86, ia64, x86_64, Win32 and Linux

● Native OpenMP support

● Very good Fortran support

● C/C++ compiler supports many GNU extensions

● GNU Interoperability: can link g77 libraries&

● Advanced Optimizations: IPO and PGO

● Dbx debugger, but GNU tools can be used, too

● GNU gprof compatible profiler

● Extensive online documentation, tuning guides

20/01/09 Laboratorio di Linux Clusters

IMHOIMHO
● Intel

– too many releases.. (=too many bugs)
– Performances: at the moment quite good…

● PGI:
– diagnostic: not so good (it does not detect too

many errors…)
– Performances:still good but Intel is now performing

better [at least on my codes]) than PGI compiler
● NAG:

– Diagnostic: excellent !!
– Performances: poor (at least on my code)

● Gfortran/G77
– diagnostic: good

– performances: not so good

–

First flag: know something about your First flag: know something about your
compiler...compiler...

● Which version are you using ? (provide
always this information to your sys. Adm.)
– Gnu: -v

– Pgi: -V

– Intel: -v or -V

azorka~ 13>ifort -v
Version 8.0
azorka~ 14>ifort -V
Intel(R) Fortran Compiler for 32-bit applications, Version 8.0
\ Build 20040616Z Package ID: l_fc_pc_8.0.046_pe049.1
Copyright (C) 1985-2004 Intel Corporation. All rights reserved.
FOR NON-COMMERCIAL USE ONLY

second flag: know everything about your second flag: know everything about your
compiler...compiler...

● Which flags can I use ?
– Gnu: --help

– Pgi: -help

– Intel: --help

TIPS:
azorka~ 13>ifort –help | less
 Intel(R) Fortran Compiler Help
 ==============================

usage: ifort [options] file1 [file2 ...]

 where options represents zero or more compiler options

 fileN is a Fortran source (.f .for .ftn .f90 .fpp), assembly (.s),
 object (.o), static library (.a), or other linkable file

third flag: name your executable ! third flag: name your executable !

● By default all compiler will produce an
executable named a.out.

● You can use a -o flag (standard for all the
compiler) to generate something more
meaningful ..

azorka~ 13>ifort -o my_code.x my_code.f90

Summing up...Summing up...

● We just scraped surface: lot of gory details not
mentioned but leave them to computer
scientists...

● I recommend you try out some of the
commands on your preferred platform and
gradually deepen your understanding.

● In general the better you understand the
compiler you are using the better you will be
able to exploit it.

