
Latinamerican School for

Computational Materials

Science.

Santiago, Chile - Enero, 2009

Stefano Cozzini

CNR-INFM DEMOCRITOS, Trieste

Optimization techniques

2
20/01/09

Agenda:Agenda:

● Introduction
● Performance and evaluating process (Profiling

and timing your code)
● Optimization techniques
● General Performance techniques

– Use of Libraries: see next lecture..

3
20/01/09

IntroductionIntroduction

● Discuss how to measure performances of your cluster/system
● Discuss performance tuning techniques common to most

modern architecture (mainly 32/64 bit commodity processor)
● Using optimization techniques users have control over

– Code modification
– Compiler options

● Optimization is a dirty work (and dangerous one for your
code...)

● Compiler is your best friend..

4

Memory hierarchyMemory hierarchy

5

Locality of ReferenceLocality of Reference
• Most programs have a high degree of locality in their

accesses
• Memory hierarchy tries to exploit locality

● Temporal locality:
Recently referenced items (instr or data) are likely to be referenced
again in the near future:
-iterative loops, subroutines, local variables
-working set concept

● Spatial locality:
programs access data which is near to each other:
-operations on tables/arrays
-cache line size is determined by spatial locality

● Sequential locality:
processor executes instructions in program order:
-branches/in-sequence ratio is typically 1 to 5

6
20/01/09

Performance Evaluation processPerformance Evaluation process

● Monitoring System:
– Use monitoring tools to better understand your machine’s limits

and usage
● is the system limit well suited to run my application ?

– Observe both overall system performance and single-program
execution characteristics. Monitoring your own code

● Is the system doing well ? Is my program running in a
pathological situation ?

● Monitoring your own code:
– Timing the code:

● timing a whole program (time command :/usr/bin/time)
● timing a portion (all portions) of the program

– Profiling the program

7
20/01/09

Useful Monitoring Commands (Linux)Useful Monitoring Commands (Linux)

● Uptime(1) returns information about system usage and user load
● ps(1) lets you see a “snapshot” of the process table
● top process table dynamic display
● free memory usage
● vmstat memory usage monitor

8
20/01/09

Monitoring your own code (time)Monitoring your own code (time)

NAME
 time ­ time a simple command or give resource usage

SYNOPSIS
 time [options] command [arguments...]

DESCRIPTION
 The time command runs the specified program command with
 the given arguments. When command finishes, time writes a
 message to standard output giving timing statistics about
 this program ..

­­­­­­­­­­­­­­­>time ./a.out
 [program output]

real 0m1.361s
user 0m0.770s
sys 0m0.590s

user time: Cpu­time dedicated to your program
sys time: time used by your program to execute
system calls
real time: total time aka walltime

9

User/System/Walltime User/System/Walltime
● Real time (or wall clock time) is the total elapsed time

from start to end of a timed task

● CPU user time is the time spent executing in user space

– Does not include time spent in system (OS calls) and time spent
executing other processes

● CPU system time is the time spent executing system
calls (kernel code)

– System calls for I/O, devices, synchronization and locking, threading,
memory allocation

– Typically does not include process waiting time for non­ready
devices such as disks

● CPU user time + CPU system time < real time

– CPU percentage spent on process = 100% * (user+system) /
real

10

a top disaster: swapping.. a top disaster: swapping..

●virtual or swap memory:
This memory, is actually space on the hard drive. The operating system

reserves a space on the hard drive for “swap space”.

● time to access virtual memory VERY large:
● this time is done by the system not by your program !
●sometimes the system assumes a killer to kill your program.. (oom killer)

11

top disaster example (1)top disaster example (1)

[cozzini@stroligo optimization]$ /usr/bin/time ./a.out
 provide an integer (suggested range 100-250)
 larger values can be very memory and time-consuming
300
 inizialisation time= 11.787208
10.86user 0.98system 0:14.22elapsed 83%CPU (0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (5major+106090minor)pagefaults 0swaps

[cozzini@stroligo optimization]$ /usr/bin/time ./a.out
 provide an integer (suggested range 100-250)
 larger values can be very memory and time-consuming
320
Command terminated by signal 2
0.18user 1.81system 0:29.27elapsed 6%CPU (0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (5846major+170788minor)pagefaults 0swaps

12

top disaster example (2)top disaster example (2)

[cozzini@stroligo optimization]$ /usr/bin/time ./a.out <300 &
[cozzini@stroligo optimization]$ free
 total used free shared buffers cached
Mem: 507492 484916 22576 0 1156 10172
-/+ buffers/cache: 473588 33904
Swap: 2048248 78108 1970140

[cozzini@stroligo optimization]$ /usr/bin/time ./a.out <320 &
[cozzini@stroligo optimization]$ free
 total used free shared buffers cached
Mem: 507492 506412 1080 0 252 3936
-/+ buffers/cache: 502224 5268
Swap: 2048248 546348 1501900

13

Timing portion of the codeTiming portion of the code
● Record the time

before portion A
● execute portion A
● record the time

after portion A
● print/save the

difference in time
for subsequent
analysis

● C function to
compute time:
– clock

● Fortran90 function
to compute time:
– cpu_time routine

(f95)

clock_t c0, c1;
c0 = clock();
 section to code..
c1= clock();
 cputime = (c1 - c0)/(CLOCKS_PER_SEC);

 call cpu_time(t0)

 section to code..
 call cpu_time(t1)
 cputime = (t1 - t0)

14

Well written codes have their own timing Well written codes have their own timing
report.. report..

 c

 !!Specific TIMING for section: MD INTEGRATION !!!!!!!!!!
 !Serial subroutines :

 !section times avg-time max(PE) min(PE)
 !vscale 2 0.0600 0.0600(0) 0.0600(0)
 !scanpairs_prot 100 72.5500 72.5500(0) 72.5500(0)
 !vertest_prot 100 2.2600 2.2600(0) 2.2600(0)
 !link_list 7 70.2900 70.2900(0) 70.2900(0)
 !spme_prot 100 727.8700 727.8700(0) 727.8700(0)
 !fill_charge_gri 100 214.5000 214.5000(0) 214.5000(0)
 !fft_back 100 79.2700 79.2700(0) 79.2700(0)
 !scalar_sum 100 43.2400 43.2400(0) 43.2400(0)
 !fft_forw 100 78.8400 78.8400(0) 78.8400(0)
 !grad_sum 100 303.6600 303.6600(0) 303.6600(0)
 !ewcorr_prot 100 24.4000 24.4000(0) 24.4000(0)
 !ewald3_prot 5870100 15.4300 15.4300(0) 15.4300(0)
 !pair_force_prot 100 0.0000 0.0000(0) 0.0000(0)
 !srfew2_prot 5855979 817.5300 817.5300(0) 817.5300(0)
 !dihfrc_prot 100 3.0800 3.0800(0) 3.0800(0)

15
20/01/09

Analysis TechniquesAnalysis Techniques

● there are three generally available
techniques for analyzing code performance:
– Compiler reports and listings
– Profiling
– Hardware performance counters

16

Compiler Reports and ListingsCompiler Reports and Listings

● Compilers on most modern high performance
computers are capable of doing a wide range of
optimizations,

● By default, compilers generally do not describe in
much detail what kinds of optimizations they were
able to perform on a given piece of code.

● However, many compilers will optionally generate
optimization reports and/or listing files.
– Optimization reports are typically sent to stderr at

compile time and contain messages describing what
optimizations could or could not be applied at various
points in the source code.

– Listing files usually consist of a listing of the source code
with messages about optimizations interspersed through
the listing.

17
20/01/09

Reporting and Listing Compiler OptionsReporting and Listing Compiler Options

GNU compilers
 None
PGI compilers
 -Minfo=option[,option,...]

Prints information to stderr on
option; option can be one or more
of time, loop, inline, sym, or all

 -Mneginfo=option[,option]

Prints information to stderr on why
optimizations of type option were
not performed; option can be concur
or loop

 -Mlist Generates a listing file

Intel compilers
 -opt_report Generates an optimization report on

stderr

 -opt_report_file filename Generates an optimization report to
filename

18
20/01/09

ProfilingProfiling

● Profiling is an approach to performance analysis in which the
amount of time spent in sections of code is measured (using
either a sampling technique or on entry/exit of a code block)
and presented as a histogram.

● This allows a developer to identify the routines which are
taking the most execution time, as these are typically the best
candidates for optimization.

● Profiling can done at varying levels of granularity:
– Subroutine
– Basic block
– Source code line

● Profiling usually requires special compilation.
– The specially compiled executable will generate a file

containing execution profile data as it runs.

– This data file can be analyzed after the code is run

– a profiling analysis program should be employed

19
20/01/09

Profiling Compiler OptionsProfiling Compiler Options

FORTRAN INTEL:
-prof-dir <d> specify directory for profiling output files (*.dyn and *.dpi)
-prof-file <f> specify file name for profiling summary file
-prof-gen instrument program for profiling
-prof-use enable use of profiling information during optimization
-qp compile and link for function profiling with UNIX gprof tool
-p same as -qp

FORTRAN PGF90
-Mprof[=dwarf|func|hwcts|lines|mpich1|mpich2|time]
 Generate additional code for profiling
 dwarf Add limited DWARF info for third party profilers
 func Function-level profiling
 hwcts PAPI-based profiling using hardware counters, 64-bit only
 lines Line-level profiling
 mpich1/2 Use profiled MPI communication library; implies -Mmpich1/2
 time Sample-based instruction-level profiling

GNU:
-p Generate extra code to write profile information suitable for the analysis program
prof.
 -pg Generate extra code to write profile information suitable for the analysis
program gprof.

20
20/01/09

Hardware Performance CountersHardware Performance Counters

● Most modern microprocessors have one or more
event counters which can be used to count low
level processor events such as floating point
operations, cache line misses, and total
instructions executed.

● The output from these counters can be used to
infer how well a program is utilizing the processor.

● In many cases, there are utilities for accessing
these hardware counters, through either a library
or a command line timing interface.

21

How to optimize... How to optimize...

● Iterative optimization
– 1. Check for correct answers (program must be correct!)

– 2. Profile to find the hotspots, e.g. most time-consuming
routines

– 3. Optimize these routines using compiler options, compiler
directives (pragmas), and source code modifications

– Repeat 1-3

● Optimizing the hotspots of a program improves overall
performance

● Programs with “flat profiles” (flat timing histogram)

– Programs with lots of routines that each take a small amount of
time are difficult to optimize

22
20/01/09

Optimization TechniquesOptimization Techniques

● There are basically three different categories:
– Improve memory performance (The most important)

● Better memory access pattern
● Optimal usage of cache lines (improve spatial locality)
● Re-usage of cached data (improve temporal locality)

– Improve CPU performance
● Create more opportunities to go superscalar (high

level)
● Better instruction scheduling (low level)

– Use already highly optimized libraries/subroutines

23

Where to optimize ? Where to optimize ?

24
20/01/09

Optimization Techniques for memoryOptimization Techniques for memory

● Loop Interchanges
● Effective Reuse of Data Cache
● Loop Unrolling
● Loop Fusion/Fission
● Prefetching
● Floating Point Division

25
20/01/09

Storage in MemoryStorage in Memory
The storage order is language dependent:

Fortran stores “column-wise”

C stores “row-wise”

Accessing elements in storage order greatly enhances the
performance for problem sizes that do not fit in the cache(s)

(spatial locality: stride 1 access)

26
20/01/09

Loop InterchangeLoop Interchange

● Basic idea: In a nested loop, examine and
possibly change the order of the loop

● Advantages:
– Better memory access patterns (leading to

improved cache and memory usage)

– Elimination of data dependencies (to increase the
opportunities for CPU optimization and
parallelization)

● Disadvantage:
– May make a short loop innermost (which is not

good for optimal performances

27
20/01/09

Loop Interchange - Example 1Loop Interchange - Example 1

Original Interchanged loops

Access order

Storage order

DO i=1,N
 DO j=1,M
 C(i,j)=A(i,j)+B(i,j)
 END DO
END O

DO j=1,M
 DO i=1,N
 C(i,j)=A(i,j)+B(i,j)
 END DO
END DO

28
20/01/09

Loop Interchange in CLoop Interchange in C

In C, the situation is exactly the opposite

interchange index reversal

● The performance benefit is the same in this case
● In many practical situations, loop interchange is much easier to achieve

than index reversal

for (j=0; j<M; j++)
 for (i=0; i<N; i++)
 C[j][i] = A[j][i] +B[j][i];

for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 C[i][j] = A[i][j] +B[i][j];

 for (j=0; j<M; j++)
 for (i=0; i<N; i++)
 C[i][j] = A[i][j] +B[i][j];

29
20/01/09

Loop Interchange – Mnemonic rule Loop Interchange – Mnemonic rule

● With row-major, the column or "rightmost"
index varies most quickly (C/C+)

● With column-major, the row of "leftmost"
index varies most quickly.(Fortran/F90)

30
20/01/09

Loop Interchange - Example 2Loop Interchange - Example 2

Timings are in seconds

Loop order x335 (P4 2.4Ghz) x330 (P3 1.4Ghz)

i j k 8.77 9.06
i k j 7.61 6.82
j i k 2 2.66
j k i 0.57 1.32
k i j 0.9 1.95
k j i 0.44 1.25

DO i=1,300
 DO j=1,300
 DO k=1,300
 A (i,j,k) = A (i,j,k)+ B (i,j,k)* C (i,j,k)
 END DO
 END DO
END DO

31
20/01/09

Loop Interchange Compiler OptionsLoop Interchange Compiler Options

GNU compilers:
 None
PGI compilers:
 -Mvect

Enable vectorization, including loop
interchange

Intel compilers:
 -O3 Enable aggressive optimization,

including loop transformations

TEST IF WHAT THEY CLAIM TO DO IS WHAT
THEY ACTUALLY DO

32
20/01/09

PrefetchingPrefetching

● Prefetching is the retrieval of data from
memory to cache before it is needed in an
upcoming calculation.

● This is an example of general optimization
technique called latency hiding:
– communications and calculations are overlapped

and occur simultaneously.

● The actual mechanism for prefetching varies
from one machine to another.

33
20/01/09

Prefetching Compiler OptionsPrefetching Compiler Options

GNU:
-fprefetch-loop-arrays
 If supported by the target machine, generate instructions to prefetch
memory to improve the performance of loops that access large arrays.

PGI:
-Mprefetch[=option:n] -Mnoprefetch
 Add (don’t add) prefetch instructions for those processors that support
them (Pentium 4,Opteron); -Mprefetch is default on Opteron; -Mnoprefetch is
default on other processors.

INTEL:
-O3 Enable -O2 optimizations and in addition, enable more aggressive
optimizations such as loop and memory access transformation, and
prefetching.

TEST IF WHAT THEY CLAIM TO DO IS WHAT
THEY ACTUALLY DO

34
20/01/09

Loop Unrolling ExampleLoop Unrolling Example
● Normal loop

do i=1,N
a(i)=b(i)+x*c(i)

enddo

●

● Manually unrolled loop

do i=1,N,4
a(i)=b(i)+x*c(i)
a(i+1)=b(i+1)+x*c(i+1)
a(i+2)=b(i+2)+x*c(i+2)
a(i+3)=b(i+3)+x*c(i+3)

enddo

35
20/01/09

Loop Unrolling Compiler OptionsLoop Unrolling Compiler Options

GNU compilers:
 -funroll-loops Enable loop unrolling
 -funroll-all-loops Unroll all loops; not recommended
PGI compilers:
 -Munroll Enable loop unrolling

 -Munroll=c:N Unroll loops with trip counts of at least N

 -Munroll=n:M Unroll loops up to M times

Intel compilers:
 -unroll Enable loop unrolling

 -unrollM Unroll loops up to M times

TEST IF WHAT THEY CLAIM TO DO IS WHAT
THEY ACTUALLY DO

36
20/01/09

Floating Point DivisionFloating Point Division
● Floating point division is an expensive

operation
– Takes 22-60 CPs to complete (average about 32

CPs)
– Usually not pipelined
– According to the IEEE floating point standard,

divisions must be carried out as such and not
replaced with a multiplication by a reciprocal
(even for division by a constant!)

● A possible optimization technique is to
“relax” the IEEE requirements and replace a
division with multiplication by a reciprocal.
Most compilers do this automatically at
higher levels of optimization.

37
20/01/09

Floating Point Division Compiler Floating Point Division Compiler
OptionsOptions

GNU:
-funsafe-math-optimizations
 Allow optimizations for floating-point arithmetic that (a) assume that
arguments and results are valid and (b) may violate IEEE or ANSI standards.

PGI:
--Kieee -Knoieee (default)
 Perform floating-point operations in strict conformance with the IEEE
754 standard. Some optimizations are disabled with -Kieee, and a more
accurate math library is used. The default -Knoieee uses faster but very
slightly less accurate methods.

INTEL:
--no-prec-div (i32 and i32em)
 Enables optimizations that give slightly less precise results than
full IEEE division. With some optimizations, such as -xN and -xB, the
compiler may change floating-point division computations into
multiplication by the reciprocal of the denominator.

38
20/01/09

Floating Point Division ExampleFloating Point Division Example

● inverse exercise we will do in the lab..

39
20/01/09

Floating Point Division With ArraysFloating Point Division With Arrays
● Consider the following loop nest in which the array A(i,j) is

scaled by different factors stored in array B(i):
do j=1,N

do i=1,N
A(i,j)=A(i,j)/B(i)

enddo
enddo

● The compiler can do no automatic optimization to this, because
B(i) is not a scalar. However, you can manually do the following:
– Create a temporary array to hold the inverses of the B(i) array.
– Replace the division in the inner loop with multiplication by the

temporary array.
– The resulting code can be unrolled and/or pipelined.

40
20/01/09

Optimization based on Microprocessor Optimization based on Microprocessor
ArchitecturesArchitectures

● Pipelined Functional Units
● Superscalar Processors

– Processors which have multiple functional units
are said to be superscalar.

● Instruction Set Extensions
– Newer processors have additional instructions

beyond the usual floating point add and multiply
instructions:

● SSE2/SSE3/3DNow ! Etc...
● Cat /proc/cpuinfo..

file:///home/claudial/Documents/eLab/scuole/smr1830/tools_for_computational2006/fsld.006.html
file:///home/claudial/Documents/eLab/scuole/smr1830/tools_for_computational2006/fsld.007.html
file:///home/claudial/Documents/eLab/scuole/smr1830/tools_for_computational2006/fsld.007.html
file:///home/claudial/Documents/eLab/scuole/smr1830/tools_for_computational2006/fsld.023.html

41
20/01/09

Instruction Set Extension Compiler Instruction Set Extension Compiler
OptionsOptions

GNU:
 -mmmx/no-mmx These switches enable or disable the use of
 built-in functions that allow direct access to -msse
 the MMX, SSE, SSE2, SSE3 and 3Dnow
 -mno-sse extensions of the instruction set
 -msse2 / -mno-sse2
 -msse3 / -mno-sse3
 -m3dnow / -mno-3dnow

PGI:
 --fastsse
 Chooses generally optimal flags for a processor that supports
 SSE instructions (Pentium 3/4, AthlonXP/MP, Opteron) and SSE2
 (Pentium 4, Opteron). Use pgf90 -fastsse -help to see the
 equivalent switches.

INTEL:
 -arch SSE Optimizes for Intel Pentium 4 processors with Streaming
 SIMD Extensions (SSE).
 -arch SSE2 Optimizes for Intel Pentium 4 processors with Streaming
 SIMD Extensions 2 (SSE2).

42
20/01/09

General techniquesGeneral techniques

● Blocking/ tiling
● !! Use of optimized libraries !!

43
20/01/09

Blocking for cache (tiling)Blocking for cache (tiling)
Blocking for cache is:

-An optimization that applies for datasets that do not entirely fit in the
(2nd level) data cache
-A way to increase spatial locality of reference i.e. exploit full cache lines
-A way to increase temporal locality of reference i.e. Improves data re-
usage

By way of example, let discuss the transpose of a matrix...

do i=1,n
 do j=1,n
 a(i,j)=b(j,i)
 end do
end do

44

Block algorithm for transposing a matrix:Block algorithm for transposing a matrix:

● block data size= bsize
– mb=n/bsize

– nb=n/bsize

● Code is a little bit
more complicated if
– MOD(n,bize) is not zero

– MOD(m,bize) is not
zero

do ib = 1, nb
 ioff = (ib­1) * bsiz
 do jb = 1, mb
 joff = (jb­1) * bsiz
 do j = 1, bsiz
 do i = 1, bsiz
 buf(i,j) = x(i+ioff, j+joff)
 enddo
 enddo
 do j = 1, bsiz
 do i = 1, j­1
 bswp = buf(i,j)
 buf(i,j) = buf(j,i)
 buf(j,i) = bswp
 enddo
 enddo
 do i=1,bsiz
 do j=1,bsiz
 y(j+joff, i+ioff) = buf(j,i)
 enddo
 enddo
 enddo
enddo

45

Results... (Carlo Cavazzoni data)Results... (Carlo Cavazzoni data)

46
20/01/09

Optimizing Matrix Multiply for CachesOptimizing Matrix Multiply for Caches

● Several techniques for making this faster on
modern processors
– heavily studied

● Some optimizations done automatically by
compiler, but can do much better

● In general, you should use optimized
libraries (often supplied by vendor) for this
and other very common linear algebra
operations
– BLAS = Basic Linear Algebra Subroutines

● Other algorithms you may want are not
going to be supplied by vendor, so need to
know these techniques

47
20/01/09

SummarySummary

● Performance programming on uniprocessors requires
– understanding of memory system

● levels, costs, sizes
– understanding of fine-grained parallelism in processor to produce

good instruction mix
– understanding your program

● Compilers are good at instruction level optimization and loop
transformation

● User is responsible to present code in most natural way for
compiler optimizations..

● The techniques work for any architecture, but choosing details
depends on the architecture

● Blocking (tiling) is a basic approach that can be applied to
many matrix algorithms

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	transpose example
	carlo
	Slide 46
	Slide 47

