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This paper is in part a review but it also contains some original work. It deals with the
manner in which shock waves are formed from finite compressions in gases and describes some-
thing of the structure of the shock front itself. The principal features of the behavior of shocks
in reflection, refraction, and diffraction are discussed with particular attention given to anoma-
lous observations and comparison with simple theories. Some results are given for shocks in
real molecular gases showing relaxation effects. Quite a number of illustrations are included
from the authors’ own observations in the shock tube. The treatment is not exhaustive but
covers many points likely to be of interest to teachers of physics.

INTRODUCTION

HE purpose of this paper will be to discuss
some of the properties and effects of shock
waves and their relation to sound waves. Every-
one knows that the speed of sound in a gas is
that speed at which small compressions are
propagated by collisions between molecules. In
fact, the speed of sound is approximately equal
to the average molecular velocity. Shocks, on
the other hand, are characterized by a large
increase in pressure within a few mean free paths
and advance at supersonic speeds. Explosions
and lightning are two familiar sources of shocks.
In both cases a region of high pressure is suddenly
created from which a shock travels outward
through the surrounding air. Since energy must
be spread over an ever increasing surface as the
shock expands its strength will diminish both
from the expansion and from viscous dissipation.
Eventually the shock will decay into a sound
wave.

We shall first describe some of the properties
of small amplitude sound waves. An extension of
the theory then leads to the prediction that
large amplitude waves tend to steepen on the
front side and decline in back. When viscous
effects are sufficiently small theory shows that
the front of a continuous compression wave
will eventually become infinitely steep. In the
physical sense we say that a shock has formed.
We shall then develop various relations per-
taining to shocks and discuss their behavior in
reflection, refraction, and diffraction. A device

* Part of the work described in this paper was supported
by an U. S. Office of Naval Research contract.

called the shock tube for producing them in the
laboratory under controlled conditions will be
described. Finally, mechanisms for the eventual
decay of shocks into sound waves are considered.

PROPAGATION OF SOUND WAVES

The speed of sound in a gas may be found by
applying the principles of conservation of mass
and momentum to the medium and assuming
that the compressions produced by passage of
the sound are isentropic.! A wave equation for
the variation in pressure results,

a3y’ /oxt=9%p'/ost. (1)

Here p’ is the change in pressure from ambient
at a point x and time ¢ and a is the velocity of
sound given by

a*=dp/dp, @

where it is understood that the derivative of
pressure p with respect to density p is to be
taken with the entropy constant. Many gases
behave like an ideal gas for which

p=pRT, 3)

R is the gas constant per unit mass, and T the
temperature. If the specific heats C, and C, are
constant dnd their ratio denoted by v=C,/C,
the speed of sound may be expressed as

a?=+yRT. 4)

This equation also gives the speed of a finite
rarefaction wave advancing into a gas at rest,?
1 See for instance W. F. Durand, Aerodynamic Theory

(Verlag Julius Springer, Berlin, 1934), Vol. I11, p. 210.
21, I. Glass, J. Aeronaut. Sci. 19, 286 (1952).
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TaBLE 1. Velocity of sound in ft/sec at 20°C for air,
argon, carbon dioxide, and nitrous oxide obtained by
four methods: (1) continuous sinusoidal waves, (2) ex-
trapolation of weak shock velocities, (3) finite rarefactions,
and (4) calculation from Eq. (4). In addition the values
of v at 20°C computed from the specific heats are included.

Gas Air A COs N:0
1. C. W.a 1126 1048 877
2. Weak shock 1126 874 875
3. Rarefaction® 1126 1045 874
4. /(¥RT) 1126 1046 877 872
5 v 1.400 1.667 1.290 1.275

a Values for the velocity of continuous sound waves from the litera-
ture and the speed of a rarefaction wave are given in reference 2 together
with probable errors. The data for weak shocks are original, and the
estimated accuracy is =1 for air and +2 for the other gases,

predicts the asymptotic speed of a shock as the
shock becomes vanishingly weak, and applies
to gases with variable specific heat as long as
Eq. (3) is an adequate equation of state. All of
these methods have been used to determine the
speed of sound in several different gases. It is
interesting to compare the various experimental
results with one another and with the theoretical
value. Table I summarizes the data for four
common gases, air, argon, carbon dioxide, and
nitrous oxide. The agreement is quite gratifying
in view of the variety of methods involved.

An appreciation of the extremely small ampli-
tudes associated with the propagation of sound
may be gained by noting that the pressure
fluctuations in the loudest sound that is not
actually painful is one thousandth of atmospheric
pressure. The faintest sound the ear can detect
is a variation of about 3X107% atmosphere
pressure. Since the pressure amplitude of a
spherically expanding wave drops off only in-
versely with distance, it is easy to see why
sounds may be heard at great distances from
their origin. Of course, accidental focusing by
wind and temperature gradients may greatly
increase this range.

In spite of the small amplitudes of audible
sound waves there is a tendency for the crests
to move slightly faster than the troughs since
they are at a slightly higher temperature. Thus
a sinusoidal wave will become distorted after
traveling some distance. Viscosity acts to limit
such distortion and a steady condition is reached
in which the two effects just balance one another.

This problem has been studied in some detail.?

3R. D. Fay, J. Acoust. Soc. Am. 3, 222 (1931).
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When the simplifying assumption of infinitesimal
amplitudes is dropped and the existence of
viscous forces taken into account, a more com-
plicated differential equation than the wave
equation results whose solution may be expressed
in terms of a Fourier series. The stable wave
shape even in a one-dimensional problem is
found to be a function of the amplitude. There
is therefore no fixed wave shape but a continu-
ously varying one leading finally to a sine wave
when most of the energy has been dissipated.
As an example the wave shape for a thousand-
cycle plane wave with p'=10-% atmosphere has
been computed numerically® and is shown in
AN
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FiG. 1. Calculated wave shape for a thousand cycle note
having an amplitude of 10~% atmos and the same wave
when the amplitude has decreased by half.

Fig. 1 along with the shape of the same wave
when its amplitude has decreased by half.

FINITE COMPRESSION PULSES

A single compression wave of finite size may
be generated in an imaginary experiment as
follows: a tight-fitting piston in a long horizontal
tube is accelerated to the right for a short time
and then brought to rest again a distance L from
its original position. A compression wave will
advance through the air ahead of the piston and
move every particle a distance L to the right.
Initially the wave will have some shape as shown
in Fig. 2a. Since each part of the wave advances
with the lacal velocity of sound the same sort
of steepening will occur with time as did in the
large amplitude sound waves. For the moment
let us neglect the influence of dissipation and
follow the changes in wave shape arising from
temperature effects alone.

Riemann* studied this problem many years
ago and found that the disturbance travels in
such a way that any point B with pressure p

and particle velocity v advances with the speed

¢ B. Riemann, Gottingen Abhandlungen 8, 43 (1860).



SHOCK WAVES IN GASES

v-+a, where ¢ is the local speed of sound. In terms
of the speed of sound ¢, ahead of the compression
B travels with speed a4+ (y+1)v/2.5 If one has
the velocity profile at a given time ¢t =0 (Fig. 2b),
then the profile at a later time At may be found
by advancing each point of the wave front a
distance [a:+ (y+1)v/2]A:¢. This construction
has been carried out in Fig. 2c. It is evident that
after a time t=2/[ (y+1)(dv/dx)—0] a vertical
tangent will be reached as in Fig. 2d.

An experimental verification of the foregoing
theory has been obtained in the shock tube with
the aid of an interferometer. Three pictures in
Fig. 3 show how the density in a compression
wave varies with time. Suffice it to say for the
moment that the vertical displacement of a
given fringe is directly proportional to the
density. We conclude that an infinite slope in the
theoretical solution corresponds to a shock in
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F16. 2. Construction showing how a_compression wave
steepens into a shock according to Riemann’s theory.
yVhenda vertical tangent is reached we say that a shock is
ormed.
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real life. In the next section we shall investigate
the properties and structure of shocks by means
of the conservation equations.

SHOCK WAVES

The conservation equations for a fluid enable
us to draw many conclusions about the behavior
of shocks without knowing anything about their
structure. For an observer riding on a shock in
one-dimensional steady flow let us use the
symbols $1, 71, p1, and %y to give the values of
pressure, velocity, density, and enthalpy at a
point far enough ahead of the shock for condi-
tions to be uniform. Similarly the subscript 2
will denote equilibrium conditions behind the

5 Reference 1, Vol. 3, p. 216.
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shock. Then the equations are:

conservation of mass

P1U1= pals; (5)
momentum
P1t+p1w= P2t pevst; (6)
energy
h1+2)12/2=h2+1122/2. (7)

In general the enthalpy is a fairly complicated
function of temperature so that these three
equations and the equation of state are difficult
to solve. For the special case of an ideal gas with
constant specific heat, however, h=c,T =vp/
p(v—1). If the velocities are eliminated an equa-
tion between the pressure and density ratios
across the shock is obtained,

p2 ¥+1 po v+1 P2
- {2 )
1 v—1p =1 p;
This relation was found independently by
Rankine and Hugoniot in the last century® and
is named after them. It is applicable to mona-
tomic gases over a wide range of temperatures
and works well for air up to about 500°K. Above
this range appreciable vibrational energy is
present so ¢, is no longer eonstant.
The symmetry of Eq. (8) suggests that rare-
faction shocks might also exist in nature. These
may be shown to lead to a decrease in entropy,

(8)

"ty

L

F1G. 3. Fringe pattern obtained with an interferometer
of three stages in the formation of a shock from a con-
tinuous compression. The wave is traveling toward the
right. The vertical position of a given fringe is proportional
to the density at that point. In the last picture a jump of
seven fringes occurs.

¢ W. J. M. Rankine, Phil. Trans. Roy. Soc. 160, 277
$187?).8 I-g Hugoniot, J. école polytech (Paris) Nos. 57-59
1887-89).
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however, and must be ruled out by the second
law of thermodynamics.”

If velocities are measured in units of the local
speed of sound several useful relations assume a
specially simple form. With the same assump-
tions as before and the Mach number M defined
as v/a, the shock density and pressure ratios are

y—1
2 1= 1
pr/ 1= /[(7+1)M1 ] ©)

y+1
2y
(11112—1).
-+1

po/pr=1+ (10)
v

Both are seen to be monotonically increasing
functions of the shock speed. The speed becomes
infinitely great for an infinite pressure ratio but
the density ratio approaches a finite value of
(v+1)/(v—1), which is 4 for the monatomic
gases.

The Mach number of the flow leaving the
shock can be derived from the preceding relations
and is given by

y—1
14— (M2—1)

A vo* v+1
gt ==

0,22

(11)
2y

14— (M32—1)
v+1

Since M, is always greater than one for a shock
to exist the numerator is always less than the
denominator and we may conclude that », is
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F16. 4. Schematic drawing of the pressure distribution
in a shock tube before and just after the diaphragm is
burst. As an aid in visualizing the flow produced, the
volume occupied by particles originally in the high pres-
sure end is cross-hatched.

"H. Liepmann and A. Puckett, Aerodynamics of a
Con; ressible Fluid (John Wiley and Sons, Inc., New York,
1947), p. 40.
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always less than a.. This property is essential
to the stability of a shock with respect to slight
disturbances for it will be able to catch any signal
that may run ahead and will also be caught by
any that get behind.

THE SHOCK TUBE

To investigate the properties of these shocks
it is desirable to be able to produce them at will
in the laboratory. A device for doing this is
called the shock tube. It consists of a long pipe
divided into two sections, one of which at the
time of initiation is at high pressure and so
propagates a compression into the other which
rapidly becomes a shock. The high-pressure
region may be created in several ways. It may
be built up mechanically behind a diaphragm
which is broken at the moment of initiation. Or
a large change in pressure may be induced by
such means as chemical explosion, electric dis-
charge or exploding wires. The shock strength
is controlled by the starting pressure and tem-
perature ratios.

Once the shock is formed it moves with
constant velocity through the medium ahead
and is followed by a column of gas of uniform
state traveling with velocity z;—wv, relative to
the laboratory. The pressure distribution before
and shortly after a cellophane diaphragm is
punctured is shown in Fig. 4. The flat-topped
shock will persist until it reaches the end of the
tube or is caught by the rarefaction which
sweeps into the high pressure gas and is reflected
from the back end of the tube. Rather complete
details on the theory of the shock tube may be
found in the literature.’—%3

The Princeton shock tube is 4 in. by 18 in. in
cross section and 38 ft long. Experience has

8 Bleakney, Weimer, and Fletcher, Rev. Sci. Instr. 20,
807 (1949).

¢ J. Lukasiewicz, ‘““Shock tube theory and applications,”’
I\gational Aeronautical Establishment of Canada, Report
15, 1952.

P W, Geiger and C. W. Mautz, ‘“The shock tube as
an instrument for the investigation of transonic and super-
sonic flow patterns,” Engineering Research Institute,
University of Michigan, 1949.

1 Glass, Martin, and Patterson, “A theoretical and ex-
perimental study of the shock tube,”” University of Toronto
Instltute Aerophysics Report 2, 1953.

2R, K. Lobb, “On the Iength of a shock tube,” Uni-
versity of Toronto Institute of Aerophysics Report 4 1950.
( ;"SR)esler, Lin, and Kantrowitz, J. Appl. Phys. 22, 878
1951).
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F1G. 5. Shadow picture showing reflection of a shock of Mach number 1.034 from a solid wall.
The incident shock sets the air in motion. Relative to the point O a given particle follows the path

shown in the construction on the left.

shown that the shock has sufficient time to
become fully formed after traveling about ten
tube diameters. Shock velocities are measured
by noting the time of passage between two
schlieren light screens a known distance apart.
As the shock passes each screen the beam is
momentarily deflected into a photocell. The
pulses from the photocells are fed into an oscillo-
scope and recorded photographically on a drum
camera. The pulse from the second light screen
also actuates an adjustable electronic delay
circuit which triggers a one microsecond spark.
Since the shock strength is very accurately re-
peatable from one shot to the next a series of
pictures may be obtained showing the develop-
ment of any event.

The flow patterns may be observed by inter-
ferometer, schlieren, or shadow photography.
Shadow pictures are the easiest to get and give
the clearest information on the position of
shocks. For quantitative information an inter-
ferometer is superior since the shift of fringe
position is directly proportional to the density
change in two-dimensional flow. By geometrical
optics it can be shown that schlieren gives a

measure of density gradient while shadow is
sensitive to the second derivative of density.
As an example the shadow picture in Fig. 5 and
interferograms in Fig. 6 taken with white and
monochromatic light show a shock of Mach
number 1.034 being reflected from an incline.
Careful measurements reveal that the apparent
shock thickness in Fig. 5 is a result of the 1-usec
spark duration measured with a rotating mirror.
In a later section we shall see that the actual
thickness is ~10~5 inch. The small number of
fringes visible in the white light picture enable
us to identify fringes on either side of the shock.
If the shift in fringe position & is measured in
units of the original fringe spacing, the density
change is given by Eq. (12) where A is the wave-
length of light, %, is the index of refraction and
ps the density of the gas at STP, and / is the
width of the test section,

p2—p1=[Aps/l(n,—1)7s. (12)

Since the interferometer and the light screens
provide two independent methods of measuring
shock strengths we may make an experimental
check of the Rankine-Hugoniot relation [Eq.
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Fia. 6. Interferograms taken with monochromatic and white light of the same shock shown in Fig. 5. The small
number of fringes visible in the white light picture makes it possible to find the density change across a shock.

(8)]], or, as some prefer to look at it, a check on
the accuracy of our measurements. Shock
pressure ratios for air have been computed from
interferometer data using Eq. (8) and from
velocity measurements using Eq. (10) for a large
number of experiments. In each of nine arbitrary
intervals between 2,/$:=0.95 and 0.15 the
average values agree to one part in a thousand,
corresponding to relative accuracies of 0.1 per-
cent for weak shocks and 0.7 percent for the
stronger ones. Above this range of shock
strengths, M > 2.4, the temperature becomes high
enough to excite appreciable molecular vibra-
tional motion in Qs and N, so that v is no longer
constant. Solution of the flow equations for such
cases will be discussed later.

F1G. 7. Direct experimental test of the Rankine-Hu-
goniot relations for argon. The calculated fringe shift &,
is obtained by these relations from the shock velocity. The
difference between the resulting value and that actually
measured with the interferometer, 8., is plotted as a func-
tion of shock Mach number.

Argon, on the other hand, has such a large
electronic excitation energy that its behavior
should agree with prediction of the present
theory up to very high temperatures. Accord-
ingly, a series of pictures have been taken in
argon with shock Mach numbers between 2.6 and
4.3. The large pressure ratio required to gener-
ate the strongest shocks limits the pressure in the
channel to about 10 mm-Hg. The corresponding
fringe shift is slightly less than two so that
measurements with the interferometer become
decreasingly sensitive. A meaningful comparison
of speed and fringe measurements may be made
by computing the fringe shift we would expect
from the shock velocity. This has been done for
fifteen experiments and the results are plotted
in Fig. 7. Here the fringe shift computed from the
velocity minus that actually measured is shown
as a function of Mach number. The average of
all values is —1/20th fringe and it may be seen
that no point differs from this average by more
than 1/15th of a fringe. This is well within our
estimated error from all causes which we have
previously taken as 1/10th fringe. So far as we
know these results in air and argon are the best
direct experimental verification of the validity
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of the assumptions made in deriving the Rankine-
Hugoniot relation. It is, of course, just the result
we expected to get.

SHOCK INTERACTIONS

Probably the simplest problem of shock inter-
action that one can formulate is that analogous
to Snell’s law for reflection and refraction. For
shocks the angle of incidence and reflection will
in general not be equal because the incident
shock produces an increase of entropy of the gas
so that the reflected shock must travel through
a medium having a different thermodynamic
state. The problem of reflection on a wall may
be formulated as follows: For a given shock
strength and angle of incidence what reflected
waves will leave the gas flowing parallel to the
wall? In Fig. 5 the incident shock I strikes the
wall at an angle « to produce a reflected shock
R at the angle «'. Consider a coordinate system
in which the point of intersection O is at rest.
The change in components of velocity normal
to the shocks can be found from Egs. (9) and
(11), while the tangential components of velocity
are unaffected. Polachek and Seeger!* solved the
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F16. 8. Theoretical solution for the reflected shock angle
o' as a function of the angle of incidence « and the shock
strength £=pi/p..

4 H. Polachek and R. Seeger, “Regular reflection of
shocks in ideal gases,” Explosive Research Report No. 13,
Bureau of Ordnance, U. S. Navy Dept., 1944.
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F16. 9. Comparison of theory and experiment for the
transition between two-shock (regular) reflection and
three-shock (Mach) reflection. a, is the angle above which
no two-shock solution exists in Fig. 8, e, is the angle of
incidence for which the outflow from the reflected shock
becomes sonic, and «, is the experimentally observed
transition angle (upper curve).

resulting set of equations for o' subject to the
condition that the two shocks deflect the flow
equal amounts but in opposite directions. Their
results are shown in Fig. 8 for eight shock
strengths. The parameter £ is defined as the ratio
of pressure ahead of a shock to that behind,
£=1,/ps, so that £=1 gives the sonic case and
£=0 corresponds to an infinitely strong shock.
Two features of these curves are of special note:
only for sufficiently small values of e, a<a., do
any solutions exist and below these extreme
values two possible reflected waves can occur.
Of the two, that for smaller o' gives the weaker
reflected shock.

One further limitation is placed on the region
of two-shock or regular reflection by the rela-
tions between the curvatures of shocks and
streamlines where they cross.!® Above a limiting
angle of incidence the reflected wave is curved
throughout its length and difficulties are en-
countered in meeting the boundary conditions
at the wall. As a consequence the flow behind
the intersection must be at least sonic for the
simple two-shock idea to apply. The angle for
which the outflowing air becomes sonic with
respect to O is designated by «, in Fig. 9 where
it is plotted as a function of £ together with the
extreme angle «,.

Extensive experiments have been carried out

15 A, H. Taub, Ann. Math. 58, 501 (1953).
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Fic. 10. Experimental and theoretical values for the
reflected shock angle o', or for Mach reflection «’, as a
function of the angle of incidence for one strong shock
strength, £=0.15, and one weak shock, £=0.9. The circles
indicate points where regular reflection is observed and
the x’s are for Mach reflection. Here, as is usual practice,
the coordinates are w=a—x and o' =a’+x (see Fig. 12),
where x is zero for regular reflection. The angle between
the incident shock and the incoming flow relative to the
intersection is therefore w.

by Smith,'® and his measurements show good
agreement between experiment and the solution
leading to the weaker reflected shock. Results
for £=0.15 and 0.9 are shown in Fig. 10. It
might be mentioned that in steady supersonic
flow past a wedge the weaker shock is also the one
commonly observed. No proof of greater sta-
bility for the weaker wave has been found as yet.

When the angle of incidence exceeds the value
for which any regular reflection exists a new
and quite different pattern is observed experi-
mentally as shown in Fig. 11.17 Mach reflection,

181, G. Smith, “Photographic investigations of the
reﬂ(;ction of plane shocks in air,”” OSRD Report No. 6271,
1945.

17 The interferogram shown in Fig. 11 was obtained
using a different adjustment of the interferometer from
that for Fig. 6. In this case the mirrors are set exactly
parallel to give uniform interference over the entire field
when no disturbances are present. When the shock arrives
regions of equal density will change the optical path

length equally and appear as light and dark fringes. Thus
the density field is presented directly. This method has
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named for Ernst Mach who first observed the
effect,!’® shows the incident and reflected shock
meeting some distance from the wall with a
third shock extending from the point of inter-
section to the wall. This third shock will be
called the Mach stem and the point of inter-
section the triple point.

An additional discontinuity extends back from
the triple point. This is a slipstream separating
the gas which has passed through the incident
and reflected shocks from that which has gone
through the Mach stem. The entropy changes
are slightly different so that the requirement of
equal pressures if the streamlines are to be
parallel gives slightly different particle velocities.
The magnitudes are such that the gas above
flows away from the triple point faster than
that below.

The use of a symmetrical wedge rather than
an incline on a plane reduces the disturbing
effect of the viscous boundary layer at the solid
surface. Since there is no dimension inherent
in the configuration it seems reasonable to
suppose, and experiment bears this out, that
the pattern grows similar to itself in time. That
is, the flow is pseudostationary and the three
independent coordinates x, y, ¢ reduce to two:

I—-

F1G. 11. Mach reflection of a shock from a symmetrical
wedge. £=0.42. For this picture the interferometer is
adjusted so that a uniform field exists when no disturbances
are present. Contours of equal brightness then become
lines of constant density.

the disadvantage that the contours cannot be labeled
without doing additional experiments but will be used
here frequently because it illustrates features of the flow
so vividly.

18 E. Mach, Akad. Wiss. Wien 77, 819 (1878).
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x/t, v/t. This was first suggested by wvon
Neumann.® Even with this reduction in the
number of variables the mathematical problem
is so formidable that no general solution for the
flow field in Mach reflection has been discovered.
Several proposals have been put forth to treat
special cases and a representative example will
be discussed in the following paragraphs.

If the flow is pseudostationary the triple point
T travels along a straight line through the corner
C making some angle x with the surface as in
Fig. 12. By letting the flow proceed long enough
any degree of magnification desired of the region
near the triple point can be obtained. No
singularities in shock turvature have been ob-
served in the pictures. This suggests that condi-
tions are continuous in all of the angular domains
around T bounded by the four discontinuities,
and it seems plausible to assume that the shocks
can be treated as straight as one approaches
arbitrarily close to 7. To an observer riding
with the triple point the three-shock situation is
thus similar to the two-shock problem investi-
gated before. Here the condition of flow parallel
to the wall is replaced by the requirement that
the velocities behind the triple point be parallel
and the pressures equal. von Neumann has
solved the resulting equations in terms of the
shock angles w=a—x and o’ =o'+ relative to
the line at angle x. The resulting values of the
three-shock solution are plotted in Fig. 10 (where
for regular reflection x =0 and a=w) for £§=0.15
and 0.9. Agreement with experiment is fair for
the strong shocks (#=0.15) but is poor for the
weak case. This result is surprising in view of the
success of the two-shock theory. An additional
problem is that of understanding the persistence
of two-shock reflection beyond the theoretical
limit as illustrated in Fig. 9. The curve ay shows
the experimental points where x becomes zero,
representing the transition between Mach and
regular reflection. In summary, we may say
that we have a local theory for the angles at the
intersection which work for regular reflection
below a, and for Mach reflection above ao for
strong shocks. Outside this range clearcut dis-
crepancies exist which still need to be explained.

12 J, von Neumann “Oblique reflection of shocks,”” Exptl.

Res. Rep. No. 12, Bureau of Ordnance U. S. Navy Depart-
ment, 1943.
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F1c. 12. Construction showing how the angle x is
defined. When the flow is pseudostationary the triple point
T moves in such a way that x remains constant.

The only complete solutions of the reflection
problem discovered so far are restricted either
to nearly glancing incidence (a=90°) or to
nearly head on reflection (@=0°). Since experi-
ments must be made at an angle at least 5°
different from these limits in order to detect
anything a problem of interpretation arises
which can be resolved either by extrapolating
experimental data to zero angle or by making
a second-order correction to the theory. Four
papers?®2 dealing with solutions of this type
agree quite well with experiment.?:?® One such
case will be reviewed here.

Ting and Ludloff® have reported a method
which they used to find the flow field when an
incline is struck by a shock strong enough to
produce supersonic flow relative to the corner.
(For air this requires that ps/p1 be greater than
5.) The mathematical approach used has been
explained more fully elsewhere.?* White?® has
compared their results for one shock strength
with his measurements. Figure 13 shows the
theoretical and experimental results for a shock
of strength £=0.137. Evidently there is good
agreement in both the shape of the pattern and
the quantitative values of the density contours.
Such discrepancies as exist can be ascribed to
the finite angle used in the experiment.

Knowledge about shock refraction is in a very

®V. Bargmann, “On nearly glancing reflection of
shocks,”” OSRD, No. 5171, 1945, See also reference 24.
( ;‘41:; J. Lighthill, Proc. Roy. Soc. (London) A198, 454
1 .
( 2 Ng J. Lighthill, Proc. Roy. Soc. (London) A200, 554
1950).
( 2 Lj Ting and H. F. Ludloff, J. Aeronaut. Sci. 18, 143
1951).
2 Fletcher, Taub, and Bleakney, Revs. Modern Phys.
23, 271 (1951).
25 D, R. White, “An experimental survey of the Mach
reflection of shock waves,”” Proc. Second Midwestern Con-
ference on Fluid Mechanics, Ohio State University, 1952.
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Fic. 13. Comparison of Ting and Ludloff’s solution
(above) with White’s experimental result (below) for a
shock of Mach number 2.53 striking a small incline of
5.4°. The solid lines are contours of constant density.

much more primitive state than for reflection be-
cause of the multiplicity of solutions obtained
theoretically and experimental difficulties in
forming a suitable interface between two gases.
Again let us study ‘“‘regular’ refraction first
where only the possibility of straight shocks is
considered. In Fig. 14 the line OD represents
the boundary between the two gases having
specific heat ratios v, vs, and velocities of sound
a1, as. The incident, reflected, and transmitted
waves are represented by I, T, and R, respec-
tively. Five quantities are necessary to specify
a problem completely; the incident shock
strength £, its angle of incidence e, the ratio of
sound speeds a@1/as, and v, and ;5 Relative to
the point of intersection O the boundary condi-
tions are that the flow direction and pressure
behind R be the same as behind T". The boundary
may be deflected to some new direction OB. Solu-
tions of the resulting equations for several com-
binations of gases have been obtained by Taub?®
and by Polachek and Seeger?” with the aid of
electronic computers. Polachek and Seeger also

28 A H. Taub, Phys. Rev. 72, 51 (1947).
27 H. Polachek and R. Seeger, Phys. Rev. 84, 922 (1951).
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considered the possibility that the reflection R
be an expansion fan centered at O rather than
a shock.

Several physical limitations must be placed
on the mathematical solutions in order that the
results be meaningful. Even when this is done,
however, more than one choice often remains
and one must apparently rely on experiment to
pick the correct branch. A special argument may
be made for those branches of the solution which
approach the well verified acoustical version of
Snell's law, sina/sina’’ =a;:/as, for vanishing
shock strength and the head-on refraction of
finite shocks where one-dimensional solutions
may be found easily. Until experiments are
carried out, however, such discussions must be
of a purely speculative nature.

In addition to the existence of an extreme
angle a. beyond which no solutions of regular
refraction exist at all, the following possibilities
must be considered as a varies; (a) the flow
velocity normal to the reflected wave must be at
least sonic, 1.e., « is limited by some value which
we shall denote as «.; (b) a reflected shock may
vanish and become a reflected rarefaction in-
stead, the transition occurring at a=a;; (c) for
the transmitted shock to exist the velocity of
the point of intersection must be supersonic
with respect to the lower medium (gas 5),
limiting a to values less than ;. Extra complica-
tions will arise if the outflow is not supersonic
in both media.

A single example will be included here; that of
a shock striking an air-methane interface. For

F1G. 14. Pattern of “regular’ refraction at the interface
0D between two gases. Flow directions relative to point
O are shown.
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other cases the reader is referred to the papers
already cited. For normal incidence (a¢=0) a
shock is transmitted through the methane and
a rarefaction reflected into the air. This occurs
because the particle velocity behind the shock
in methane is greater than that of the air passed
over by the incident shock so the air must
accelerate to the right in order that no vacuum
forms at the interface. A rarefaction traveling
to the left through the air accomplishes just this.

Theoretical investigation of the limiting angles
previously enumerated give the data presented
in Fig. 15 for a,, o, and a; as a function of £.
For a given £ a reflected rarefaction is predicted
for all values of « from 0 to a;. At a=a; no re-
flected wave occurs at all. Between «, and «; the
reflected wave is a shock and regular three-shock

30
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F1c. 15. Limiting angles on the regular refraction of
shocks at an air-methane interface. For angles of incidence
less than o, theory predicts that the reflected wave is a
rarefaction. Between o; and o; a reflected shock should
occur, and above a; no solution for regular refraction
exists. In this case the requirement that the flow normal
to the reflected wave R be supersonic is less severe than
that given by ai.

refraction should be observed. The interfero-
gram shown in Fig. 16 verifies this prediction.
When e; is reached the outflowing methane be-
comes subsonic and the regular refraction pattern
can no longer exist. Slightly beyond «; the trans-
mitted wave would run ahead and form some
other pattern.

No theoretical approach has been made to
such a situation so far but as may be seen from
Fig. 17 the flow is quite complicated. At a=76°
and £=0.86 the transmitted wave is consider-
ably ahead of the incident wave and a signal
has been retransmitted from the methane to the
air. The incident and reflected waves have the
appearance of Mach reflection except that the
Mach stem is moving into a nonuniform region.
In this case of an air-methane interface, the
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F1G. 16. Regular refraction of a shock at an air-methane
boundary. £=0.86, a=>51°. Incident, reflected, and re-
fracted shocks are visible. In this picture a thin film
separates the two gases. The film is deflected downward
by the shocks and a small gap may be seen between the
film and holder behind the point of intersection. The
ground plane is visible at the bottom of the picture.

limitation imposed by «, and a, are not reached.
For other combinations of gases quite different
patterns may be observed.

Diffraction, the third kind of shock interaction
we shall discuss, bears even less similarity to its
optical counterpart than do reflection and re-
fraction because shocks have no wave nature
(in spite of the common usage in calling them

—

—

=

F16. 17. Refraction at an air-methane interface with
£=0.86, a =76°. Here a is greater than the limiting angle
a; so that the transmitted shock has run ahead of the
incident shock and retransmitted a compression wave
into the air. Except for this disturbance the incident and
reflected shocks are very like a Mach reflection in
appearance.

i
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Fr1G. 18. Two stages in the diffraction of a shock over a
rectangular block. The eddies formed behind each corner
are regions of very low pressure. In the second picture
the incident shock has reflected from the ground behind
the block, entered the second eddy, been spun around
clockwise, and come out as a nearly cylindrical shock.

shock waves) and therefore exhibit little of the
phenomena of wave interference. Shock diffrac-
tion is important from the practical viewpoint
these days for the engineer faced with the
problem of the design of blast resistant struc-
tures. Not only is a structure suddenly immersed
in an atmosphere of increased pressure when
struck by a large blast wave but the shock front
at the leading edge of the oncoming disturbance
is diffracted about the object in a complicated
manner setting up cross currents and eddies
which profoundly affect the load distribution
on the structure. Figure 18 shows two stages in
the diffraction of a shock over a two-dimensional
block in the shock tube. In the first picture the
incident shock may be seen crossing the top of
the block. A reflected shock travels to the left
to inform the oncoming stream of the object’s
presence. An eddy forms behind the corner and
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is gradually swept downstream as it increases
in size. The second shot shows how the incident
wave reflects from the plane and is caught up in
the eddy behind the block. Since a large clockwise
circulation exists there the shock is spun around
and emerges as a cylindrical shock. The inter-
ferogram may be evaluated in terms of the
density and from these data the pressure can be
calculated everywhere with considerable ac-
curacy.?®? The pressures at the surface of the
block give, of course, the force distribution
(neglecting viscous effects) over the entire ob-
stacle at this particular time. A series of such
pictures allows the loads to be determined as a
function of time. As the transient effects dis-
appear one would expect the pressure loading
on the block to approach that observed in wind
tunnels. This is indeed the case.

Several other examples of diffraction are
shown in Figs. 19, 20, and 21. There is no
adequate theory for such phenomena. A con-
siderable amount of experimental data has
therefore been collected giving information about
the pressure loading on a wide variety of
objects.?8%

Space does not permit a discussion of all shock-
wave interaction phenomena. For instance a con-
siderable amount of work has been done on one-

Fic. 19. Early stages in the filling of a hollow block
after it has been struck by a shock. The net force on the
top of the block is downward; later an upward force is
observed when the shock inside reflects from the back wall.

28 Bleakney, White, and Griffith, J. Appl. Mech. 17, 439
(1950).

2 W, Bleakney, “A shock tube investigation of the blast
loading of structures,’”’ Proceedings of the Symposium on
Earthquake and Blast Effects on Structures, University
of California, Los Angeles, p. 46, 1952,
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dimensional interactions.! Here theory and ex-
periment are in good accord.

SHOCK STRUCTURE

A further goal in fluid dynamics is to under-
stand the mechanisms that determine the thick-
ness and structure of a shock. One might ask, for
instance, whether the equations of a continuous
fluid apply or not. If they do then viscosity and
heat conduction are certainly important in the
theory of shock structure because velocity and
temperature gradients must be very high within
the shock. The conservation equations for one-
dimensional steady flow assume the form

(d/dx)pv=0,
d  dp 4 dw

=y =0, (14)
dx dx 3 dx?

d 72 d dT 2u dv\?
) E ()

dx 2 dx dx 3 dx
where p and « are the coefficients of viscosity
and thermal conductivity, respectively. Becker?®
first succeeded in solving the equations but made
the assumption that these two coefficients are
constant. Thomas® pointed out that Becker's

result must be incorrect for strong shocks where
the dependence of u and « on temperature is im-

(13)

d*

dx?

], (15)

F1G. 20. Diffraction past a thin plate mounted perpen-
dicular to the direction of shock travel. In this experiment
one end of the plate was ground to a sharp edge to see
what change this would make in the pattern. Very little
effect can be seen.

® R. Becker, Z. Physik 8, 321 (1923).

31L. H. Thomas, J. Chem. Phys. 12, 449 (1944). See
also A. E. Puckett and H. J. Stewart, Quart. Appl. Math.
7, 457 (1950). )

FiG. 21. A weak shock passing over an airfoil at a small
angle of attack. The shock below the wing arrived at the
rear first. Thus the diffracted part above the tail and the
rarefaction which started downward simultaneously are
a bit ahead of the rarefaction and shock, respectively,
formed when the shock above the wing arrived at the
rear. A small vortex may be seen a short distance behind
the trailing edge.

portant. Using the kinetic theory result that
both u and « vary as 4/T, Thomas obtained shock
thicknesses considerably greater than those from
the Becker theory. Nevertheless, since the values
found are only a few mean free paths for shocks
faster than M ~1.2, continuous fluid theory may
not give as satisfactory an interpretation as the
kinetic theory of gases.

Two rather distinct lines of approach have
been taken in applying the kinetic theory to
shocks. In one, successive approximations to a
Maxwell-Boltzmann distribution

fo (‘UGW Uy, 7}2) = (M/ZwkT)%
Xexp[ —m (.2 +v,2+v.2) /2T ]
of molecular velocities are made by taking into

account the effect of nonuniform conditions along
the x direction.®

f=rot+fitfot . (17)

Each term is assumed to be a function only of
those preceding it.

Fr=f1(fo), fe= fa(fo, fo),
fa=Fs(fo, fu, fo)s - .

Equations (13)—(15) may be derived by retaining
only fo+ fi. Thus a calculation using only the

(16)

2 For a discussion of this method see S. Chapman and
T. G. Cowling, The Mathematical Theory of Non-Uniform
Gases §Cambridge University Press, Cambridge, 1939),
Chap. 7.
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first-order terms would give just the Thomas
theory again. Further terms from the expansion
presumably improve the theory provided the
solution converges rapidly enough to justify the
assumption that the molecular velocity distribu-
tion may be obtained from Eq. (17) at all. Zoller®
has carried out calculations to the third order
on the variation of properties through shocks of
pressure ratio p./p:1=1.5, 4, and 6.5. For the
strongest shock ps/p1=6.5, the third-order terms
are comparable in size to the first and second so
that the accuracy of this solution is still in
question. For pa/p1 <4 Zoller’s results appear to
be satisfactory.

Since shocks appear to get thinner with in-
creasing Mach number Mott-Smith* has made
the interesting suggestion that the velocity dis-
tribution may be composed of a mixture of two
Maxwellian distributions corresponding to uni-
form conditions on the high- and low-temperature
sides of the shock. Appreciable numbers of mole-
cules from these two populations penetrate to
the center of the shock. The structure itself is
found by solving Boltzmann’s equation® for the
transport of kinetic energy across the shock.

A comparison of the various theories may be
made by giving the shock thickness L as a func-
tion of Mach number. The quantity L is defined
by the construction in the insert in Fig. 22 where
it is seen to be the distance between intercepts
of a tangent drawn at the steepest point of the
shock profile. Very little difference exists in the

MOTT -SMITH
BECKER .

164 THOMAS

.08+

Lk

o ZOLLER
* EXPERIMENT

Fi1G. 22. Shock thickness L as a function of Mach
number M. ) is Maxwell's mean free path. The circles
are experimental points for argon obtained by Greene
and Hornig. L is defined in the inset.

8 K. Zoller, Z. Physik, 130, 1 (1951).
# H, M. Mott-Smith, Phys. Rev. 82, 885 (1951).
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shape of this profile in the various theories so no
attempt is made to distinguish among them in
comparing thicknesses. The parameter chosen
as ordinate in Fig. 22 is Maxwell’'s mean free
path A in the gas ahead of the shock divided by
shock thickness L.

Owing to the extreme thinness of shocks only
a little experimental data can be reported so far.
Cowan and Hornig®® have devised a method of
measurement based on the reflectivity of a shock
front. The amount of light reflected depends on
the wavelength of the light, its angle of incidence,
the index of refraction of the gas, the shock
thickness, and its density profile. Measurements
have been made in argon and nitrogen up to
M =238 The experimental points for argon are
plotted on Fig. 22. Apparently the Mott-Smith
and Zoller theories come closest to these
experiments.

When molecules have rotational and vibra-
tional energy as well, the picture becomes more
complicated for, as has been known for a long
time, exchange of kinetic energy with internal
degrees of freedom takes place rather slowly.
In nitrogen, for example, the average number of
collisions to attain rotational equilibrium is
slightly larger than the number in a weak shock
front so that the foregoing theories are not
directly applicable. In carbon dioxide at STP
about twenty collisions are required on the
average to exchange rotational quanta while
80 000 are needed for vibration. One might
assume in this case that the shock consists of a
narrow zone in which translation and rotation
reach equilibrium followed by a region where
vibrational energy comes slowly into adjustment.

Since the approach to vibrational equilibrium
in carbon dioxide is spread out over such a large
number of collisions it is possible to observe
this lag with the interferometric techniques
already described. Figure 23 shows a shock of
Mach number 1.134 traveling through CO; at
200 mm Hg pressure and 23.5°C. An initial jump
in density across the shock front is followed by a

3 G. R. Cowan and D. F. Hornig, J. Chem. Phys. 18,
1008 (1950).

% E. F. Greene and D. F. Hornig, “The shape and thick-
ness of shock fronts in argon, hydrogen, nitrogen, and
oxygen,”” ONR Contract N7onr-358, Tech. Rep. No. 4,
Brown University, 1952.
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Fi16. 23. A shock of Mach number 1.134 in CO,. The
region where vibrational energy gradually approaches
equilibrium may be clearly seen. The two vertical hairlines
are 1 in. apart. Data are given in Table II,

region of adjustment in which the density asymp-
totically approaches a final equilibrium value.
Bether and Teller?” have given a theoretical
treatment which may be used to interpret these
effects. Conditions at state 2, immediately
behind the shock front, may be found from Eqs.
4), (9), (10) with the assumption that only the
vibrational energy remains unchanged in crossing
the shock front. At 23.5°C, the specific heat at
constant volume for CO; is divided among the
various degrees of freedom as follows: (3/2)R in
translation, R in rotation (CO; is a linear sym-
metric molecule), and 0.95R in vibration. The
appropriate specific heat ratio v for calculating
conditions at state 2 is therefore 1.4 and the
effective Mach number is equal to the shock
speed divided by the velocity of sound computed
not counting the vibrational contribution to
specific heat. The final equilibrium state 3 is
found from Egs. (5)-(7) taking into account the
temperature dependence of enthalpy. Table II
gives the values of pressure ratio, temperature,
density ratio, and velocity in the three regions
of Fig. 23. In their paper Bethe and Teller show
that the values of velocity, density, etc., on the
high-pressure side of the shock are uniquely
determined by the initial conditions on the low-
pressure side of the shock without reference to
any of the intervening processes. It follows that
the only effect of lagging heat capacity on a plane

37 H. A. Bethe and E. Teller, “Deviations from thermal
equilibrium in shock waves,” Reissued by University of
Mgchigan, Engineering Research Institute, Ann Arbor,
1951,
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steady shock is to increase its thickness and not
to alter the final state of the gas.

If one assumes that the vibrational state may
be characterized by a temperature Ty, then the
approach to equilibrium is governed by the
relation

devinTvin/dt = (coin (T— Toin)/7), (18)

where ¢yi is the vibrational specific heat and r
is the relaxation time. After a time r the tem-
perature difference would diminish to 1/e, or
0.368, of its initial value in a case where the
temperature change was small so that = and
¢vip remained constant. A fair estimate of r may
be made from Fig. 23 by measuring the distance
d to the point where a given fringe has ap-
proached to within 1/e of its final position. The
relaxation time is r=d/v;=11 usec. We have
neglected the changing velocity and temperature
as the gas flows away from the shock front and
have assumed that the density also decays ex-
ponentially. Correcting for these factors makes
only a small change in 7. Actually the CO; con-
tains some impurities which, if eliminated,
would make the relaxation time even longer.
Some experiments have been made on very
strong shocks where a considerable fraction of
the molecules receive enough energy to produce
dissociation, electronic excitation, and ionization.
A shock of Mach number 5 in argon, for example,
is luminous over a region somewhat less than
100 mean free paths.’® Other interesting effects
have been observed with cylindrically converging
shocks®® and shocks produced in gaseous dis-
charge tubes.® Since the energy of a copverging
shock is distributed among a continually decreas-
ing number of particles, the possibility arises of
producing exceedingly high temperatures. Esti-

TasLE I1. Gas properties for the shock in carbon dioxide
shown in Fig. 23. Region 1 is ahead of the shock, 2 im-
mediately behind the shock front, and 3 far enough away
for complete equilibrium to exist.

Region 1 2 3
Temperature °C 23.5 40.7 43.0
Pressure ratio P/t 1 1.214 1.359
Density ratio /ot 1 1.148 1.276
Flow velocity ft/sec 1014 883 795

3 R. W. Perry and A. Kantrowitz, J. Appl. Phys. 22,
878 (1951).

¥ Fowler, Goldstein, and Clotfelter, Phys. Rev, 82,
879 (1951).
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F16. 24. Sketch of the pressure distribution 1.5 sec after
the explosion of an atomic bomb. Atmospheric disturbances
and the uneven ground greatly modify this idealized
pattern at large distances.

mates of the temperature produced in this way
have ranged well over 20 000°K. Luminous
shocks have been produced in a tube by dis-
charging a large condenser across it,* and
spectral analysis of the light produced showed
that Hett, Nt+ and N*+t were present in the
shock. Other measurements indicate that the
duration of emission is not longer than one or
two wsec. Many aspects of these phenomena
have not been explained.

DECAY OF SHOCKS

In previous discussions of plane shocks in
tubes we have assumed that immediately behind
the front the flow variables were constant and
the shock proceeded without attenuation. When
the rarefaction reflected from the end of the
chamber catches up with the shock this state of
affairs is no longer true and the shock is rapidly
attenuated. Even before this happens one cannot
neglect completely the growth of boundary
layers on the walls and the development of resis-
tance to the flow which serves to slowly weaken
the incident shock.® The effect decreases with
increasing tube diameter.

The shock wave generated by an explosion or
other concentrated source in a homogeneous
atmosphere expands in three dimensions and
decays very rapidly because of the ever greater
area of its surface and the irreversible processes
involved. The hot gases over expand creating a

#R. J. Emrich and C. W. Curtis, J. Appl. Phys. 24,
360 (1953).
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rarefaction which eats away the shock from
behind giving it the peaked character commonly
observed.*! Figure 24 is a sketch of the state of
affairs 1.5 seconds after the explosion of an
atomic bomb of the ““Able” type.*! At a distance
of 3000 feet the shock creates a pressure rise of
8 psi. Two miles from the center the shock has
dropped to 1 psi and looking at the tail of the
rarefaction in this figure one observes that the
wave ends with a rise in pressure and this part is
propagated into the region of the trough where
the velocity of sound is lower. Evidently these
are the qualitative conditions required for shock
formation and, indeed, for weak shocks of short
duration® a stable wave form has been observed
consisting of a rise in pressure through a shock
followed by a linear fall to an equal pressure
below atmospheric and ending in a shock return-
ing the pressure to atmospheric again. These “N”’
waves are a logical result of the discussion of
Fig. 1 for increased amplitudes. They are not
observed, however, for very large explosions
presumably because, at the great distances one
must go from the source before the amplitude can
be called small, the durations become very long
and the slope of the pressure-distance curve
is below the value necessary for rapid shock
growth. As a matter of practice in the field, the
classical shape indicated in Fig. 24 is never ob-
served for weak blast waves at great distances
since the atmosphere is far from uniform and the
earth is not an ideal boundary. From thirty to
several hundred miles the refractive effects of
temperature gradients and wind currents lead
to interfering effects from multiple paths which
result in widely distorted sound waves of large
amplitudes® but low fundamental frequencies
of the order of one fifth cycle per second.

4U. S. Atomic Energy Commission, The Effecis of
Atomic Weapons (McGraw-Hill Book Company, Inc
New York 1950).

42 DuMond, Cohen, Panofsky, and Deeds, J. Acoust. Soc.
Am. 18, 97 (1946).

#E. F. Cox, J. Acoust. Soc. Am. 19, 832 (1947).

Concerning new discovertes and theories, Thomas Young says, ‘“‘The discovery of simple and
uniform principles, by which a great number of apparently heterogeneous phenomena are reduced
to coherent and universal laws, must ever be allowed to be of considerable importance toward the
improvement of the human intellect.”’—Thomas Young, Natural Philosopher by ALEx Woob

(Cambridge University Press, 1954).

The above may be an example of Thomas Young’s verbose and heavy prose by which he

failed to be a clear lecturer.—ED.



