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Abstract

There are deep underlying similarities between Rosen’s
(M,R) systems as a definition of life and the RAF sets (Re-
flexive Autocatalytic systems generated by a Food source) in-
troduced by Hordijk and Steel as a way of analyzing autocat-
alytic sets of reactions. Using RAF concepts we have system-
atically explored the set of possible small idealized metabolic
networks, searching for instances of (M,R) systems. This
exhaustive search has shown that the central requirement of
Rosen’s framework, unicity of , becomes harder and harder
to obtain as the network grows in size. In addition, we give
an expression for operators , and in terms of RAF sets.

Introduction
Metabolic closure is easy to introduce informally but rather
difficult to define. Although it is crucial for understanding
living organization it was neglected until late in the 20th cen-
tury. The rebirth of the scientific study of biological organi-
zation can be traced back to the 30-year period from 1958 to
1987, which saw the publication of several distinct perspec-
tives on closure, including (M,R) systems (Rosen, 1958), the
chemoton (Gánti, 1975), hypercycles (Eigen and Schuster,
1977), autopoiesis (Maturana and Varela, 1980), autocat-
alytic sets (Kauffman, 1986), and the first Artificial Life con-
ference in Los Alamos in 1987 (organized by Christopher
Langton). There was, however, an almost complete lack of
cross-fertilization between the different schools of thought,
with each theory developed with almost no reference to any
of the others (Letelier et al., 2006; Cornish-Bowden et al.,
2007; Cárdenas et al., 2010). The most extreme case of iso-
lation is represented by Robert Rosen (1934-1998), who in-
troduced the concept of (M,R) systems early in his career
to represent biological metabolic networks. His isolation
was aggravated by the intricate nature of his writings, in
which biological ideas were mixed with abstract mathemat-
ics. Furthermore, he expressed his mathematical ideas in
non-standard notations and without any effort to help the
reader by giving examples or offering many needed clari-
fications.

In recent years, we have undertaken a systematic attempt
to understand and explain the core notions of Rosen’s the-

ory (Letelier et al., 2006). We have (a) clarified the re-
lationship between (M,R) systems and autopoiesis (Lete-
lier et al., 2003); (b) reframed Rosen’s original formula-
tion in terms of biochemical networks, with the introduction
of the notion of “organizational invariance” for understand-
ing Rosen’s elusive mathematical operators (such as his );
(c) made a clear distinction between (M,R) systems in gen-
eral and (M,R) systems with organizational invariance, a no-
tion that is only implicit in Rosen’s writing (he confusingly
called these “replicative” (M,R) systems); (d) given mathe-
matical and biological examples of simple idealized systems
that can be understood within Rosen’s intellectual frame-
work; (e) clarified how these notions can be used to explore
the origin of living systems and how they should be used in
the context of what has come to be called “systems biology”.
Finally, we have also shown how our formulation of (M,R)
systems can shed light on the problem of the computability
of living systems (Cárdenas et al., 2010). This short sum-
mary is intended simply to underline how fruitful Rosen’s
view of metabolic closure has become, and to explain why
we feel that the boundaries of our knowledge can be pushed
to qualitatively new grounds by continuing the exploration
of his ideas.

The systematic absence of examples (whether mathemat-
ical or biological) from Rosen’s work has always been prob-
lematical, especially of simple examples that can serve as
heuristic devices for enhancing theoretical research. In this
paper we address the two points outlined above by pointing
out the close relationship between (M,R) systems and a re-
cent theory of living organization based on what have been
called RAF sets. We show how many examples of simple
(M,R) systems can be found by a computer algorithm con-
structed on the model of RAF sets. We discuss how the tech-
nical tools originating in RAF sets can be used to enhance
the research of (M,R) systems, and specifically we address
the problem of the nature and unicity of Rosen’s in the
context of RAF sets.
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(M,R) systems
Rosen’s original formulation of (M,R) systems (Rosen,
1958), relied on a view of metabolism as a graph, and on
a very abstract view of enzymes as functions (in the mathe-
matical sense). The metaphor of metabolism as a graph, new
in 1958, has subsequently been adopted by many people,
without attribution to Rosen. The view of enzymes as func-
tions has not attracted a wide following as Rosen’s formu-
lation seems unnecessarily abstract, without bringing prac-
tical or theoretical benefits. He used this approach in order
to be able to use category theory for framing his important
intuition about metabolic closure. Although this demanding
mathematical approach has some advantages, as described
in our previous work, we shall not use it here as the funda-
mental ideas exposed by Rosen can be explained using set
theory, and thereby become accessible to mainstream biolo-
gists.

Our analysis of (M,R) systems, together with our exam-
ples, shows that the crucial aspect to understand organiza-
tional invariance is to understand the nature of the equation

( ) =
Here represents the aspect of biological organization that
relates how catalysts are produced by the system. This equa-
tion seems to imply that a living system is organized in such
a way that knowing (right-hand side of biochemical equa-
tions) should be enough to unambiguously assign the cata-
lysts (represented by ) to the reactions in the network.

Rosen, moreover, requires that there be only way to carry
out this assignment, i.e., that there is only one mapping
such that ( ) = , a demanding assumption indeed. In
other words, that we can reverse the procedure that gives
back from . The reverse procedure is Rosen’s , so that

( ) =
Mathematically, is just the inverse of the “evaluation at
” operator that evaluates every function at . Biologically,

represents the mechanisms that specify how the process
of creating catalysts is maintained over time, i.e., organiza-
tional invariance.

To clarify these notions, we created a small metabolic net-
work where they can be embodied in actual molecules that
implement the functions and (Letelier et al., 2006).

RAF sets
We now give a brief introduction to the work of Hordijk and
Steel (2004), who constructed a formal framework to study
autocatalytic systems. Their main aim appears to have been
to expand Kauffman’s formalism about autocatalytic sets
(Kauffman, 1993), to respond the criticisms that arose out
of Kauffman’s assumptions. At the same time, their analysis
developed interesting algorithms that handle this expanded

Figure 1: (M,R) system described by a catalytic reaction
graph. Gray squares represent reactions and circles denote
metabolites and enzymes. The black arrows represent chem-
ical transformations while gray dashed arrows indicate cat-
alyzations. This small network also contains a RAF set gen-
erated by the food set ( ).
framework. As a result, they have produced a powerful ap-
proach that can be used to analyze a wide variety of systems,
and here we shall describe how it applies to (M,R) systems.
Their formalism depends on the following two sets: , the
set of molecules involved in metabolism as metabolites, cat-
alysts or external input material (termed food in the formal-
ism), and R, the set of reactions that defines the metabolic
network.

Each reaction is represented as a tuple ( ), where⊂ , ∩ = ∅, are the reactants and the prod-
ucts of reaction . This formalism is similar to Rosen’s
treatment of enzymes as transformations between two sets
of molecules.

Further, to formalize the notion of catalysis, a specific set
(called the set of “catalyzations” by Hordijk and Steel),

is introduced. Each catalyzation is a tuple ( ), where∈ is the catalyst and ∈ R is the reaction catalyzed
by . The similarity with Rosen (1958) is evident, as any
given catalyzation = ( ) can be rewritten as = ( ) =( ( )) = ( ), making transparent the fact that
molecule catalyzes the reaction → .

With the set of catalyzations defined, Mossel and Steel
(2005) introduced a function that helps to simplify formu-
lae in later sections:

( ) = { if ∃ ∈ ∶ ( ) ∈ ,
otherwise (1)

Additionally, a specific subset of containing every
molecule that is used but not produced by the metabolism
is denoted and it represents the food molecules.

Thus a catalytic reaction system over a food source is
composed by a triplet L = ( R ) that defines the uni-
verse of molecules ( ), the reactions occurring among these
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molecules (R) and the identity of the catalyst involved in
each reaction ( ) (see Figure 1). The following additional
functions are defined: ( ) = and ( ) = , which re-
turn the reactants and the products of any given reaction ,
respectively. With the help of these elementary functions
the same notion can be extended to a set of reactions R′
as (R′) = ⋃ ∈R′ ( ), where R′ ⊆ R. This definition
captures the conglomerate of molecules that participate as
reactants for a set of reactions. A similar definition holds
for (R′), the products of a subset of reactions. With these
ideas, we can define the closure of a subset ′ ⊆ relative
to R′ ⊆R ( R′( ′)) as the set of reachable molecules that
can be synthesized by starting from ′ and applying all the
reactions in R′ until no new molecule types appear. Then,
a non-empty reaction subset R′ of R is a reflexively auto-
catalytic network over if (R′) ⊆ R′( ) and for each∈R′, ( (R′)∪ (R′) ) = . In other words every cata-
lyst must be produced by a reaction in the same system or be
part of the food set. This definition allows many reflexively
autocatalytic networks in a catalytic reaction system. The
network is -generated if every reactant is either produced
by the system or incorporated as a food item (i.e. formally(R) ⊆ ∪ (R)). A network that is reflexively autocat-
alytic and -generated is called a RAF set (see Figure 1).

RAF sets can be understood informally as an interdepen-
dent set of biochemical reactions where all of the metabo-
lites are produced by the collection of reactions R′. The
advantage of this formalism is that it is precise enough to be
coded in well defined algorithms that check whether a given
reaction subset R′ ⊆ R is a RAF set over some food set .
We have implemented these algorithms, and we have created
a simple framework in Lisp and Python, allowing us to carry
out qualitative and quantitative analyses of (M,R) systems in
terms of RAF formalism. Before discussing this, however,
we need to show the extent to which RAF sets and (M,R)
systems are equivalent.

RAF sets and (M,R) systems
Are (M,R) systems RAF sets? The original definition of an
(M,R) system (Rosen, 1958) explicitly requires every cata-
lyst (M in his original symbols) must be produced by the
metabolism (R sub-systems are responsible for this task).
This condition shows that (M,R) systems must be reflexively
autocatalytic (RA) sets. Although, this does not necessarily
imply that a RA set is an (M,R) system, because metabolic
closure requires that no catalyst is given in the food set. In
other words, a RA set is not in general an (M,R) system, but
it may become one if all the catalysts in are produced by
the system and are not part of the food set .

As (M,R) systems must be open to the flow of matter in or-
der to satisfy thermodynamic requirements, their molecules
derive ultimately from a food source, and they are, obvi-
ously, -generated in the terminology of RAF sets. So
(M,R) systems without organizational invariance are a sub-

set of RAF sets, as are (M,R) systems with organizational in-
variance. The latter must, however, have additional features
(in the context of RAF) to explain the unusual properties of
operators and .

Algorithmic search for simple metabolic (M,R)
systems

In this section we explore the probability of occurrence of an
(M,R) system with a unique assignment of catalysts. For this
purpose we characterized all the possible graphs describing
a system consisting of a number of initial molecules and

R synthesis reactions between any two molecules in the
system. More specifically, we analyzed systems that con-
formed with the requirement of being (M,R) systems, that
is, we did not allow any catalyst to be food, nor a reactant
nor a product in the reaction it catalyzed.

Attention must be paid to avoid having two apparently
distinct reaction networks exhibiting the same topological
structure. The mathematical term for this is graph isomor-
phism (see Figure 3). Two graphs are said to be isomorphic
when they can be transformed into each other by a simple
relabeling of their vertices. Isomorphic metabolisms can be
grouped under an equivalence class.

Thus, for a given pair ( R) we enumerate the num-
ber of all possible different equivalence classes of reaction
networks. Next, for each one of these reaction networks, we
generated the set of all possible assignments for the catalysts
complying with the restrictions stated previously. But again,
by the argument of relabeling, the set of assignments can be

Figure 2: Diagram representing an example for the proce-
dure to compute results from table 1. In the first step, the
equivalence classes (3 in this example) are estimated for a
given ( R); in the second step, all possible catalysts
assignments for each equivalence class are calculated.
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(a) (b) (c)

Figure 3: Three automatically generated RAF sets illustrating equivalence class and multiple catalyst assignments. Systems
(a) and (b) have the same topological structure, i.e. there is an isomorphism from one to the other. Although this might not be
obvious at first sight, a simple procedure of node relabeling transforms the reaction pathway in (a) to the one in (b). In spite of
that, the systems differ in their catalyst assignments, i.e., even with the additional rules imposed by (M,R) systems, it is possible
to make different choices when assigning the catalysts. System (c) has the same number of elements in the food set and the
same number of reactions, but it belongs to another equivalence class.

also divided into equivalence classes (see Figure 2). Table 1
shows for ( R) the number of metabolic equivalence
classes and the interquartile range1 of the number of assign-
ments. It can be seen that the number of possible assign-
ments grows steeply with the number of reactions, so that it
becomes more and more difficult to have a unique ( ) =
(Letelier et al., 2006).

There are some cases in which the range includes the crit-
ical value 1, which implies organizational invariance. Al-
though, if we increase the number of food elements and
leave the number of reactions unchanged, the generated re-
action networks become shallower, and so we can consider
the complexity of the network to be reduced and therefore
the degrees of freedom of the assignation process are also re-
duced. In principle we could separate the trivial cases from
those in which the unicity of the assignment reflects organi-
zational invariance.

Rosen’s triad in RAF formalism
The RAF formalism is not only useful for exploring the land-
scape of possible (M,R) systems, but it can also help to clar-
ify some core concepts of (M,R) systems, namely Rosen’s
triad: , and .

To explore the potential of the RAF formalism, we ana-
lyze the old problem in the theory of (M,R) systems of how

1This refers to the range in which data falls after removing
lower and upper 25%, thus giving a notion of the amplitude of the
mean values

to treat molecules as functions. Consider the following bio-
chemical reaction:

+ !→ +
According to Rosen, this is the manifestation of the follow-
ing function:

∈ ( × × )
∶ × → ×
( )→ ( )

The input elements are derived from the cartesian set ×
that contains all the molecular types that, because of their
structural similarities, can be used by the enzyme as sub-
strates. Our RAF-derived formalism extends the domain of
function to the whole set of molecules as follows: is
a function that, when given a set of molecules with the re-
actants, e.g. ( ), returns a set containing ele-
ments and . But if the original input set lacks elements
or , we have (input set) = ∅. Interestingly, with this for-
malism any molecule in the network ( ∈ ) can be treated
as a function operating on any subset ( ′ ⊆ ) as follows:

( ′) = ( ) provided that ( ) ⊆ ′

where stands for the reaction that catalyzes. If cat-
alyzes more than one reaction2, then the above definition can

2This multifunctionality seems to be necessary for (M,R) sys-
tems (Letelier et al., 2006).
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Number of Number of reactions
food molecules 3 4 5

2 4 2–2 19 12–24 136 144-216
3 10 1–4 72 12–31 685 216–324
4 8 1–6 75 1–36 933 204–432
5 2 1–1 37 1–34 577 1–432
6 1 1–1 11 1–1 212 1–1

Table 1: Number of metabolic equivalence classes and the interquartile range of the number of their possible assignments. The
number of equivalence classes increases dramatically with the number of reactions.

be generalized to:

( ′) = { ∶ ∈ ( ) ∣ ( ) ∈ ∧
( ) ⊆ ′} (2)

Note that defining only requires the set of reactions each
molecule catalyzes, not the whole reaction network. This
means that every molecule-as-a-function definition depends
only on local information.

In our earlier work, the following small metabolism was
used as a testbed for exploring concepts related to (M,R) sys-
tems.

+ !!→ (3)

+ !!!→ (4)

+ !!→ (5)

Then, treating every molecule as a function we have:

( ) = { }
( ) = { }

( ) = ∅

The last equation means that molecule U cannot transform
the given mixture, because U is not a catalyst in the given
metabolism. That said, we shall now analyze how concepts
like , and can be expressed with these ideas.

Metabolism:
One of the basic equations in Rosen’s model is ( ) = ,
in which represents the input materials (food set) needed
by the organism to produce the complete set of metabo-
lites and enzymes ( ), i.e., every molecule reachable by the
metabolism. Therefore, the function is related to the no-
tion of closure ( R′( ′)). To be able to define in our
terms, let us define function expand.

expand ( ′) = ′ ∪ ⋃∈ ( ′) (6)

Moreover, let us define how a molecule set ( ′) can be
applied to another molecule set ( ′).
!⇀′( ′) =

{ ′ if expand ′( ′) = ′,!⇀′(expand ′( ′)) otherwise
(7)

Thus, we use a molecular set as a function (distinguished
from regular molecular set by a “semi-arrow”) by repeatedly
applying expand until no further additions occur. With these
two last definitions, for any given catalytic reaction system= ( R ), ( ) can be defined as:

( ) =!!!!!!!⇀catalysts( )( ) = (8)

where catalysts is a function that returns every catalyst in
the given catalyzation set (catalysts( ) = { ∶ ( ) ∈}). The function catalysts is not required, as non-catalyst
molecules do not modify the result. But it is used here as
Rosen’s formalism considers only catalysts as the core com-
ponents of the metabolism.

Replacement:
The formulation of under RAF sets is more elaborate
as we need to generate a function that using as an in-
put returns function . The basic idea is to create mathe-
matical objects that somehow keep track of which catalysts
are produced and how these are created as a result of the
metabolism. To begin we introduce operator . This oper-
ator returns the subset of molecules ′′ ⊆ ′ that can act as
catalysts upon the molecules in ′ (the given molecule set).

( ′) = { ∈ ′ ∶ ( ′) ≠ ∅}
Then, for any given catalytic reaction system =( R ) over a food source , ( ) will be defined as

( ) =!!!!!!!!!!⇀( R( ) ∪ ) = ′ (9)

where R( ) is the closure of relative to the reaction set R
as defined above. Therefore, returns the catalyst set that
are reachable from as a function ( ′), because the “semi-
arrow” over the expression transforms the resulting set into
a function. Thus, ′ is operationally equivalent to function

.
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Organizational invariance:
Finally, it remains to define , which should take the
metabolism as input and give us the replacement system .
The function receives a hypothetical metabolism ′ in the
form of a function, thus our first step will be to find which
catalysts can be related to that function ′. For that purpose,
let us define the function that given a molecular set and
a function ′, returns every reaction catalyzed by molecules
in , which produces part of the result of ′ applied to .

( ′ ) = { ∶ ( ∪ ) = }
By using a new function , we filter out those reactions

that cannot take place given the molecule set of interest ( ∪
).

( ′ ) = { ∈ ( ′ ) ∶
( ) ⊆ ∪ } (10)

This equation gives the reactions that are related to ′,
therefore can be defined. For simplicity we shall define it
as applied to a molecular set .

( ′)( ) =!!!!!!!!!!!!!!⇀( ( ′ )( ) ∪ ) (11)

This formula is similar to that of , the main difference be-
ing that it uses function to obtain R instead of using R
directly. In this way returns a function that, used in an
(M,R) system, would relate unequivocally to .

Conclusion
A formidable challenge for using (M,R) systems as a frame-
work for modeling biological systems has been the lack of
operational definitions for the important functions , and

. Here we have presented various definitions for those
functions that can be used for any catalytic reaction system.

An important unresolved matter is to make explicit how
Rosen’s equations can be fulfilled using concepts and def-
initions imported from RAF sets. Suppose that a given
molecule set and reaction set compose an (M,R) sys-
tem, how can that be proved using RAF-derived functions?
First, let us distinguish a particular subset of , which
contains every molecule that is not a product or a catalyst
for any reaction. Then, we can write:

( ) =
This signifies “let the molecular system evolve until no fur-
ther novelty can be produced”. Now, we should expect that
using the produced molecules as function will have the same
effect as using . In our terms, that means:

( )( ) =

This has the important consequence that becomes equiva-
lent (operationally) to ( ) in this molecular system.

, as introduced here, does not explain Rosen’s basic re-
sult ( ( ) = , which means that is uniquely determined
by ). The definition of and all associated formulae cannot
explain Rosen’s result, they merely serve as formal language
that could help us to operate on modern metabolic data using
Rosen’s viewpoint.

Since the beginning of the 21st century there has been a
resurgence of interest in the work of Robert Rosen, but it is
not easy to understand and it is not apparent how to advance
in a theory full of powerful but often obscure ideas (Lete-
lier et al., 2006). Many attempts have been made to find
the route to be followed in developing the theory (Wolken-
hauer and Hofmeyr, 2007). Here we apply another formal-
ism (RAF sets) that could be useful for clarifying the nature
and properties of the operators , and .

Finally, we have the caveat that living systems are not
mere “soups of letters”, and their complex properties are due
to more than some combinatorics among molecules. It is ap-
parent that to advance in our understanding of living organ-
isms, it will be necessary to include further considerations
into our current theory. These could be geometrical, ther-
modynamical, topological, or even merely historical, that
is, relative to how life has come into existence, and later
evolved here on Earth.

The RAF formalism may usher in an era in which the the-
ory of (M,R) systems will demand reasoning tools that begin
to resemble category theory more and more... Rosen would
be amused!
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