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a b s t r a c t

A simple method to obtain a gap-corrected band structure of cadmium telluride within density
functional theory is presented. On-site Coulomb self-interaction-like correction potential has been
applied to the 5p-shell of Te and the 4d-shell of Cd. The predicted physical properties are similar to or
better than those obtained with hybrid functionals and at largely reduced computational cost. In
addition to the corrected electronic structure, the lattice parameters and the bulk modulus are improved.
The relative stabilities of the different phases (zincblende, wurtzite, rocksalt and cinnabar) are preserved.
The formation energy of the cadmium vacancy remains close to the values obtained from hybrid
functional calculations.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Cadmium telluride is a semiconductor material with a long
history of applications, such as radiation detectors and photovol-
taic devices. In particular, CdTe thin-film solar cells have been
greatly improved during the last decade and are challenging the
silicon solar market. CdTe presents crystalline structure and
electronic properties common to traditional inorganic semicon-
ductors. Therefore, its electronic properties are well understood. In
particular, its band diagram was determined by Chelikowsky and
Cohen many years ago [1,2], by means of empirical pseudopoten-
tial calculations with parameters fitted to experimental data.

The CdTe photovoltaic response is greatly modulated by the
thermodynamic and electronic properties of defects, impurities
and grain boundaries, which are much more difficult to character-
ize than the pure material. In fact, in many situations the
identification of the defects and impurities is uncertain, and
theoretical calculations have provided insights into their nature
and the doping limits [3]. Complementary to experimental tech-
niques, density functional theory (DFT) constitutes a powerful
theoretical tool for calculating quantum electronic states of atoms,
molecules, and extended solids. The main virtue of DFT is that it is
a predictive method, free of system-dependent parameters, and
has been extremely successful in the calculation of ground state
electronic properties. To a lesser extent, DFT is an invaluable tool

for a first estimation of excited state properties. A famous and
controversial problem of practical DFT approximations, such as
local density approximation (LDA) and generalized gradient
approximation (GGA), is the underestimation of the valence–
conduction band gaps. For inorganic semiconductors like CdTe,
the DFT band gaps are typically 50% of the experimental gaps. Gap
underestimation is severe in CdTe: the gap is estimated at
approximately 0.3 eV when the spin–orbit coupling is included
in the calculation, compared with 1.6 eV experimental value [1,2].
Disregarding the conceptual difference between the DFT and the
experimental band gap, the failure to reproduce the gaps affects
the predictive capability of certain ground-state calculations. One
example is the calculation of thermodynamical properties of donor
impurities, where empirical gap corrections are applied to total
energies given by LDA and GGA calculations [4,5]. Moreover, deep
in-gap defect levels and their total energies, which are not
perturbed states of a single (conduction or valence) band, cannot
be obtained from single corrections to LDA/GGA calculations [3,5].
Hybrid functionals [6,7] that include a fraction of Hartree–Fock
exchange, and the quasiparticle Green function formalism GW
[8,9], enable the electronic structure to be attained in generally
better agreement with experiments. However, the computational
cost is increased by one or two orders of magnitude, and this
constitutes a severe limitation for supercells containing nearly 100
atoms. Therefore, it is convenient to explore alternative methods
that tackle particular scientific problems at reduced computational
cost and are, at the same time, self-consistent and adaptable to
various chemical environments. Two examples are the addition of
empirical nonlocal external potentials (independent of the elec-
tron state) and the inclusion of empirical electron–electron
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interaction terms, the strength of which can be fitted to the gap or
other electronic properties [5]. The latter approach is followed in
this paper.

In the case of CdTe, as in other II–VI compounds, the band gap
underestimation is related to the underestimation in LDA/GGA of
the binding energy of semicore Cd 4d levels. Therefore, the Cd 4d
and Te 5p levels present an incorrectly large hybridization that
pushes upwards the top valence band composed mainly of Te 5p
levels [10]. LDA and GGA predict the Cd 4d electron bands to occur
about 3 eV higher than the experimental band observed in X-ray
photoelectron spectra [11,12]. This defect in the calculated binding
energy of the cation d-band is common in II–VI compounds, and it
has not been resolved completely, even using expensive self-
consistent GW methods [13,14].

The origin of the binding energy underestimation is the self-
interaction error that, in LDA/GGA, exerts a greater effect on the
more localized levels. The on-site Coulomb interaction correction
to LDA (LDAþU) and GGA (GGAþU) adds a penalty function to the
total energy, and depends on the repulsion and exchange Coulomb
integrals, U and J, respectively. In a simplified approach [15], the
penalty function is proportional to a single parameter U0 ¼U� J
per atomic subshell [15]:

ΔE¼ U0

2
∑
σ

∑
m
nσm;m� ∑

m;m0
nσm;m0nσm0 ;m

" #
ð1Þ

where nσm;m0 is the density matrix of electrons at each atomic
subshell of spin σ. In calculations with spin–orbit coupling, σ is not
a valid quantum number and the density matrices are twice as
large as those in standard calculations. It this formulation, the
double counting correction is the negative of the second term in
Eq. (1) [15].

Positive values U040 are appropriate for localized states such
as Cd 4d subshell, increasing the electron–electron repulsion and
enlarging the exchange-correlation hole. With the appropriate U0

d
parameter, the binding energy of the Cd 4d band can be fitted,
solving the problem of the hybridization with the Te 5p band.
With this correction, the band gap values are improved, but not
totally. It has been argued that negative values U0o0 are appro-
priate for delocalized anion s and Te p subshells, where the
exchange-correlation hole is overestimated by LDA [16]. Indeed,
setting negative U0

s [5,17] or U
0
p [16] for the anion s and p subshells,

the gap can be better corrected and the overall band structure is
improved. This method is called GGAþUSIC; SIC means the self-
interaction correction [16]. However, the use of U0

s degrades the
equilibrium lattice constants [5]. As will be seen here, the use of U0

p
improves the lattice constants and the bulk modulus, and con-
stitutes, in principle, a better option.

This paper is organized as follows. The computational methods
are explained in Section 2, and the results are discussed in Section 3.
Computational costs are compared in Section 4. Section 5 is devoted
to our conclusions.

2. Computational details

A plane-wave projector augmented wave [18,19] scheme has
been used, as implemented in the Vienna Ab Initio Simulation
Package (VASP) [20,21]. The GGA exchange-correlation functional
of Perdew, Burke, and Ernzerhof (PBE) [22] has been used for GGA
and GGAþU calculations. We have also used the hybrid functional
of Heyd, Scuseria and Ernzerhof (HSE) [6,7]. This functional
generally allows better band gaps and better structural properties
than PBE to be obtained, at the cost of a great increment in
computer time.

A plane wave cutoff of 460 eV has been used for the wave
functions. The Brillouin zones of all the structures considered were

sampled with Γ-centred k-point grids, automatically generated to
have a maximum separation Δk¼ 0:22 Å

�1
. With this setting, an

8�8�8 k-point grid is generated for the primitive cell of the
zincblende structure, which is used in this work. This setting
allows a convergence of 0.5 meV/atom and 0.4 kbar in total energy
and pressure, respectively, for the zincblende structure. In fact, a
reduced cutoff of 285 eV permits a convergence within 10 meV/
atom in total energy, but the properties derived from relative
energies, e.g., lattice constants and bulk moduli, remain well
converged. The spin–orbit coupling is included self-consistently
in the calculations.

3. Results and discussion

3.1. Optimized U parameters

Fig. 1 shows a set of DOS corresponding to different effective
on-site parameters Ud and Up. While the parameter Ud has
physically reasonable values, Up seems to be excessively large in
absolute values. There are two possible reasons. First, both Te 5s
and Te 5p levels need to be corrected with negative U parameters,
but VASP only allows one atomic shell to be corrected for each
element. Thus, the Up indirectly contains the correlation of Te 5s
levels, since they are implicitly linked with Te 5p levels through
the formal sp3 hybridization. Second, the onsite correlation para-
meterized by Up is projected onto Te 5p atomic orbitals as defined
in the PAW implementation, while the valence and conduction
bands are the extended states. Despite the apparently unphysical
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Fig. 1. Density of states of CdTe as a function of the Cd and Te effective parameters
Ud(Cd) and Up(Te), respectively. The spin–orbit coupling is not included in this
calculation. The vertical black line at �10.5 eV indicates the experimental binding
energy of the Cd 4d band [11].
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values of Up, it is shown below that the band structure and the
equation of state are improved with this setting. In Fig. 1, it can be
appreciated that Ud strongly modifies the binding energy of the Cd
4d band. Contrary to common belief, the effect of Ud on the
valence-conduction gap is rather small (from 0.59 to 0.84 eV,
ΔEg=ΔUd ¼ 0:042). The effect of Up on the gap is somewhat larger,
although it tends to saturate (ΔEg=ΔUp ¼ �0:060 for �6oUpo0,
and ΔEg=ΔUp ¼ �0:042 for �20oUpo0). The binding energy of
the Cd 4d band is slightly reduced by Upo0, but this dependence
is much weaker than that for Ud. Hence, both physical parameters,
the valence–conduction band gap and the Cd 4d band binding
energy, can be fitted by the pair of parameters Ud and Up. Note that
this result is contradictory with the attribution of gap under-
estimation to mixing of Cd 4d and Te 5p states and upwards
pushing of the valence band maximum [10]. The aforementioned
numbers were computed without the spin–orbit coupling. Spin–
orbit coupling splits the valence top band, so that upper bands
shift by 0.30 eV, thereby reducing the gap by the same amount.
When the spin–orbit coupling is introduced in the calculation, the
gap and the Cd 4d binding energy are obtained for Ud¼5.7 eV and
Up ¼ �25:7 eV. The following results are obtained with this
setting.

3.2. Band diagrams

Fig. 2 shows the band diagram computed with three different
approximations, PBE, PBEþUSIC, and HSE, each of which includes
the spin–orbit coupling. The unit cells have been relaxed to zero
pressure for each functional. The experimental band structure is
shown as points taken from Ref. [1]. Notice that the Cd 4d bands
are not included in the experimental band diagram.

None of the bands agrees completely with the experimental
bands. The PBE approximation strongly underestimates the band
gap and the energies of all empty bands, although these can be
corrected by an almost constant scissors shift. The gap is corrected
in HSE and PBEþUSIC. HSE underestimates the gap by 0.3 eV, while
this is exact in PBEþUSIC due to the fitting procedure. However,
the dispersion of the lowest conduction band is slightly weak in
PBEþUSIC, while it looks better in HSE.

The spin–orbit splitting of the valence bands at Γ is reproduced
correctly by HSE and PBE, and it is underestimated by 0.3 eV by
PBEþUSIC. The dispersion of the split-off band (from �4.8 to
�0.9 eV) is slightly underestimated in PBE and in PBEþUSIC. The
binding energy of the Cd 4d band is underestimated in the PBE
framework, as discussed above, and it is fitted in PBEþUSIC. In HSE,
it is underestimated by nearly 0.9 eV. For the Te 5s band
(� �10 eV), its position at Γ is correct in PBE, but the dispersion
is underestimated. For PBEþUSIC, the band is higher than in the
experiment, and the dispersion is fine, while for HSE, the band is
lower and the dispersion is underestimated again.

The electrostatic average potential is similar in HSE and
PBEþUSIC, 0.2 and 0.3 eV higher than for PBE, respectively. Alter-
natively, one can state that the valence band maximum (VBM)
with respect to the average potential is lower in HSE and
PBEþUSIC. This yields beneficial properties, as the same trend is
found in GW calculations.

3.3. Equations of state

Let us explore the capability of the PBEþUSIC method for the
calculation of the total energy and for the prediction of stable
structures. Fig. 3 shows the energy vs volume (E�V) curves for the
most important crystalline phases: zincblende (ZB), wurtzite (WZ),
rocksalt (RS) and cinnabar (CN). The WZ phase is never observed
in CdTe, but its possibility must be considered due to its close
energy values, and its frequent observation in other II–VI

compounds. The three methods, PBE, HSE and PBEþUSIC, predict
that ZB has the lowest energy at low pressures, and the energy of
WZ is slightly greater than that of ZB for all volumes. Moreover,
the experimental lattice constant and bulk modulus given by
PBEþUSIC match better the experimental values, V0¼68.06 Å3,
B0¼44.5 GPa [23].

The agreement for high pressure phases, rocksalt (RS) and
cinnabar (CN), is somewhat less satisfactory. For both PBE and
PBEþUSIC, when the volume decreases, CN transforms into RS,
which can be seen in Fig. 3 as the kinks at 52–53 Å3. In experi-
ments [24], a transition is observed from ZB into a mixture ZB–CN
when pressure increases over 34 kbar, and into RS at 38 kbar. On
decreasing the pressure, a single-phase CN is observed between 36
and 27 kbar. The experimental differences on increasing and
decreasing the pressure suggest various transition paths, the
investigation of which lies beyond the scope of this work. Our
calculations do not reproduce the stability of the CN phase at any
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Fig. 2. CdTe bands computed with the functionals PBE, PBEþUSIC, and HSE,
compared with the reference data (open circles) [1]. The dotted line indicates the
average electrostatic potential.
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pressure, they only predict transition from ZB to RS at 40 kbar
(PBE) or 51 kbar (PBEþUSIC). With the HSE functional, we have not
been able to obtain the CN equation of state, but the transition ZB
into RS has been found at 50 kbar, in agreement with PBEþUSIC.
The same failure to reproduce the ZB to RS transition has been
found using the LDA [25], and it has been shown to depend on tiny
errors in the total energy.

3.4. Vacancy formation energy

As a final application, we have calculated the formation
energies of the cadmium vacancy VCd. Following Refs. [4,5], the

formation energy has been obtained as

ΔH¼ EðVq
CdÞ�E0þEðCdÞþΔμCdþqðEVBMþEF ÞþΔEsize: ð2Þ

Here, E0 is the energy of a supercell Cd32Te32 of the ideal crystal,
and EðVq

CdÞ is the energy of the same supercell with a Cd vacancy
and �q extra electrons (net charge). EðCdÞ is the energy per atom
of bulk metallic cadmium. The Fermi level EF is defined with
respect to the VBM of the perfect crystal EVBM. Cd-rich and Te-rich
conditions are considered as thermodynamical equilibrium with
bulk Cd (ΔμCd ¼ 0) and bulk Te (ΔμCd ¼ΔHðCdTeÞ), respectively.
ΔHðCdTeÞ ¼ �1:775 eV is the CdTe formation energy. Size-effect
corrections ΔEsize include the effects of band filling, image charge,
and potential alignment as described in Ref. [5].

The formation energies are shown in Fig. 4, as functions of the
Fermi level. The transition levels εð0=�Þ and εð�=�2Þ are 0.07 and
0.58 eV, respectively. For the neutral defect, ΔH ¼ 3:82 eV (Cd-rich)
is found, which is higher than the value 3.5 eV obtained using the
functional PBE0 (0.165) [26]. It is difficult to assess which value is
better due to the lack of experimental values for comparison
purposes. On the one hand, the band-filling correction, which is
not mentioned in Ref. [26], contributes 0.22 eV in our calculation.
On the other hand, the energy differences computed with PBEþUSIC

are hampered by the fact that the U parameters are optimized for
CdTe, but not necessarily for bulk Cd and Te. HSE calculations may
also be biased, since hybrid functionals perform better for insulators
than for metals. However, despite small numerical differences,
PBEþUSIC and HSE present good overall agreement, and each
represents significant corrections to the LDA/GGA results.

4. Computational cost

The cost of the self-consistent field (SCF) calculation of a 64-
atom CdTe supercell is compared. The computation time and the
number of iterations of the SCF cycle are compared for PBEþUSIC

vs the standard PBE and the hybrid HSE, using the spin–orbit
interaction in all cases. All the calculations were performed using
64 parallel processes running on POWER7 architecture. Two
algorithms for the electronic energy minimization have been
tested: the blocked-Davidson and the damped-dynamics algo-
rithms [21]. HSE calculations cannot use the blocked-Davidson
algorithm and must be carried out with the slower damped-
dynamics algorithm. In Table 1, it can be seen that PBEþUSIC calcu-
lations need more SCF iterations than does PBE to converge, and
the time per iteration is roughly the same. HSE calculations require a
reduced wave function cutoff of 285 eV and a 2�2�2 k-points mesh,
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instead of 460 eV and 3�3�3 used for PBE and PBEþUSIC. With
the larger cutoff the calculation fails to converge in the 72-h time
allowance of the supercomputer. Even with these soft computa-
tional parameters, the HSE computation time is significantly larger
than with PBEþUSIC.

5. Conclusions

The use of PBEþUSIC for CdTe allows the band structure from
self-consistent calculations to be attained, thereby achieving good
agreement with the experimental data and the empirical pseudo-
potential method. Therefore, CdTe adds to the list of semiconduc-
tors that have been successfully described by LDAþUSIC [16]. The
accuracy of PBEþUSIC is comparable with that of the hybrid
functional HSE method, with similar values of the fundamental
band gap, the band dispersion, the relative positions of the VBM,
and the average potential, and gives better values for the lattice
constant and the bulk modulus. The band gap has been used to fit
the parameters Up and Ud, but not the other properties. Naturally,
an optimized HSE functional for CdTe could be obtained by
refitting the fraction of Hartree–Fock exchange and the screening
constant, but this is almost unnecessary as the HSE functional is
quite good for CdTe and other semiconductors. The motivation for
a fitted PBEþUSIC method is to obtain computational advantages.
The computational cost of PBEþUSIC is a fraction of the cost of
hybrid functionals, which is crucial for calculation of medium-
sized/large systems, such as the models of defects in semiconduc-
tors. The present method may be optimized with minor coding

efforts, such as allowing on-site corrections to multiple shells per
atom, e.g., s and p simultaneously. Other interesting possibility is
the recent GGAþUþV method, which includes inter-site electro-
nic interactions to treat covalent compounds [27].
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