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Abstract

In this work we report theoretical and numerical results on convection in a viscoelastic binary mixture under rotation for

realistic rigid–rigid boundary conditions. We focus our analysis in the DNA aqueous suspensions. Instability thresholds

for oscillatory convection are calculated. Finally, we analyze the stabilizing effect for the onset of convection.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Dilute suspensions of long DNA molecules display viscoelastic properties [1]. Usually, DNA fragments
mixed with thermostable polymerase enzyme are heated until the temperature required to unbound the double
helix is reached. Then the mixture is annealed, and DNA fragments are doubled by the polymerase enzyme;
after several thermal cycles a high concentration of DNA is obtained. This is known as polymerase chain
reaction (PCR), a technique usually found in biochemistry laboratories [2]. Thermal cyclers in standard PCR
heat and cool not only the whole reaction volume, but also the surrounding vessel and its fitting. This implies a
large thermal mass which delays heating and cooling.

Kolodner has reported oscillatory convection in suspensions of DNA in an annular container heated from
below; this author comments that the observed properties cannot be explained by a mere viscoelastic model
but that composition effects must be taken into account [3]. These results inspired Martı́nez-Mardones et al. to
determine theoretically the convective thresholds in binary viscoelastic mixtures under a vertical temperature
gradient [4]. Recently, Braun et al. performed a beautiful experiment in which thermal convection replaces
more efficiently the thermal cyclers often used to replicate DNA in the PCR; an essential condition to optimize
this thermal process is that convection remains laminar [5]. To improve further this convection PCR technique
it would be desirable to explore in detail the different regimes of convection in DNA suspensions.
e front matter r 2007 Elsevier B.V. All rights reserved.
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On the other hand, it is well known that centrifugation may alter DNA replication. Moreover, the rotation
is another effect that can modify convection. In general, rotation has a stabilizing effect on convection [6].
Rotating convection in Newtonian fluid [7], binary mixture [8], and viscoelastic fluids [9] have been extensively
studied. Hence, motivated by the experiments in DNA centrifugation and PCR convection we analyzed, in a
previous paper, the role of rotation on thermal convection of a binary viscoelastic fluid for idealized free–free
boundary conditions [10].

In the present work, we report theoretical and numerical results on convection in suspensions of DNA
under rotation for realistic rigid–rigid boundary conditions. The linear stability analysis of the conduction
state is studied in the framework of Navier–Stokes equations for binary mixtures whose viscoelastic properties
are described through Oldroyd type constitutive equation, in the Boussinesq approximation. The paper is
organized as follows: In Section 2, the basic hydrodynamic equations for binary viscoelastic convection are
presented. In Section 3, the linear stability analysis of the conduction state is performed, and the conditions for
the onset of convection are discussed. Finally, conclusions are presented in Section 4.

2. Basic equations and boundary conditions

Fig. 1 gives a schematic description of the setup geometry. We consider a layer of incompressible binary
viscoelastic fluid, of thickness d and very large horizontal extension, in a gravitational field and submitted to a
vertical temperature gradient. The layer is rotating uniformly about the vertical direction with uniform
angular velocity -. Let us choose the z-axis such that g ¼ �gẑ and that the layer has its interfaces at z ¼ 0 and
z ¼ d. A static temperature difference across the layer is imposed, Tðz ¼ 0Þ ¼ T0 þ DT and Tðz ¼ dÞ ¼ T0.
The top and bottom walls are assumed to be conducting and impermeable, so that the polymeric
concentration satisfies qzðN þ ðkT=T0ÞTÞ ¼ 0 at both interfaces, where kT is the Soret coefficient. Under the
Boussinesq approximation, the dimensionless balance and constitutive perturbation equations of the
conduction states read as [10]

r � v ¼ 0, (1)

P�1ðqt þ v � rÞv ¼ �rpþ r � sþ ðð1þ cÞyþ cZÞẑþ T1=2
a v� ẑ, (2)

ðqt þ v � rÞy ¼ Rawþ r2y, (3)

ðqt þ v � rÞðZþ yÞ ¼ Rawþ Lr2Z, (4)

ð1þ GDtÞs ¼ ð1þ LGDtÞD, (5)

where v ¼ ðu; v;wÞT is the velocity field, s extra stress tensor, y the temperature, and p the pressure. The
auxiliary variable Z is simply defined as Z ¼ c� y, where c is the dimensionless polymer concentration. Also
the following groups of dimensionless numbers have been introduced: (a) (pure fluids) the Rayleigh number
Ra ¼ agDTd3=kn accounting for buoyancy effects and the Prandtl number P ¼ n=k, relating viscous and
thermal dissipations; (b) (rotation in pure fluids) the Taylor number Ta ¼ ð2-d2=nÞ2, (c) (binary mixtures) the
TT = T0 + ΔT

T = T0
ϖ

x

z

0

d

g

Δ

Fig. 1. A vertical cut through the fluid layer. Note the y-axis point into the xz-plane.
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Lewis number L ¼ D=k, relating diffusion with thermal diffusivity, and the separation ratio c ¼ bkT=aT0,
and (d) (viscoelasticity) the Deborah number G ¼ l1k=d2 and the ratio between retardation and stress
relaxation times L ¼ l2=l1. In addition, the symbol Dt in Eq. (5) denotes an invariant (frame-indifferent) time
derivative, defined as Dts ¼ ðqt þ v � rÞsþ s �W�W � sþ aðs �DþD � sÞ, where W and D are the skew-
symmetric and symmetric parts of the velocity field gradient, respectively; also a is a phenomenological
parameter in the range �1 to þ1. To solve this system of equations, the realistic rigid–rigid boundary
conditions for velocity: w ¼ qzw ¼ qzZ ¼ y ¼ 0, at both z ¼ 0 and z ¼ 1 are imposed. In the next section, we
study the corresponding linear stability analysis of the conduction state.

3. Linear stability analysis and results

For calculating the linear stability analysis, we only need the linear parts of Eqs. (1)–(5); it is easily obtained
by neglecting nonlinear terms containing ðv � rÞ and replacing Dt by qt. The pressure term is eliminated after
applying the curl operator twice to the linear momentum equation. These operations produce a set of
equations in matrix form

L � X ¼ 0, (6)

where X ¼ Xðr; tÞ is defined by X ¼ ðy;f;w; zÞT and z denotes the z-component of the vorticity. The linear
differential operator L is defined as

qt � r
2 0 0 �Ra

qt qt � Lr2 0 �Ra

0 0 P�1qtPt � Xtr
2 T1=2

a Ptqz

�ð1þ cÞPtr
2
? �cPtr

2
? �T1=2

a Ptqz P�1qtPtr
2 � Xtr

4

0
BBBB@

1
CCCCA
, (7)

where r2 ¼ q2x þ q2y þ q2z , r
2
? ¼ q2x þ q2y, Pt ¼ 1þ Gqt, and Xt ¼ 1þ LGqt. For the realistic boundary

conditions, the space-temporal dependencies of Xðr; tÞ are separated by the usual normal mode expansion:

Xðr; tÞ ¼ ðY;F;W ;ZÞðzÞ exp½ik � r? þ st�, (8)

where k the horizontal wavenumber vector and where s ¼ sþ iO denote the complex eigenvalues; s is the
growth factor of a perturbation and O its frequency. This leads to the following coupled ordinary differential
equations:

YII ¼ ðsþ k2
ÞY� RaW , ð9Þ

LCII ¼ ðsþ Lk2
ÞCþ sY� RaW , ð10Þ

PQZII ¼ ðsþ PQk2
ÞZ � PT1=2

a W I , ð11Þ

W IV ¼ ð2k2
þ s=PQÞW II þ ðT1=2

a =QÞZI þ ðk2=QÞ½cFþ ð1þ cÞY� ðQk2
þ s=PÞW �, ð12Þ

where Q ¼ ð1þ GLsÞ=ð1þ GsÞ and f I
¼ qz, f II

¼ q2z , etc. In order to solve the set of differential equations
(9)–(12) we use a spectral method. We have followed the technique of collocation points in a Chebyschev grid
described by Trefethen [11]. We have chosen 14 collocation points in the vertical direction. This converts the
differential equations plus the boundary conditions into a generalized eigenproblem with the eigenvectors
being the discretized eigenfunctions ðYðzÞ;FðzÞ;W ðzÞ;ZðzÞÞ and the corresponding eigenvalues provided a set
of Rayleigh numbers. Since the physical Rayleigh numbers are real but the eigenvalues are in general complex,
we have to iterate by using different values of the frequency in order to get a vanishing imaginary part of the
eigenvalues to obtain the corresponding Rayleigh number Ra. This gives a triplet of point ðRa; k;OÞ for each
given parameter value. We repeat this procedure for several values of the horizontal wavenumber which
permits to draw a curve of the real part of the Rayleigh number as a function of this wavenumber. The
minimum of this curve determines the critical values Rac and kc, and also the associated critical frequency Oc.

Let us discuss a little more about the physical meaning of the different parameters. First, concerning the
viscoelastic parameters, the Deborah number, G, corresponds to the measure of the fluid memory effect; and
the ratio between retardation and stress relaxation times, L, corresponds to the measure of the timescale of the
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memory effect. The parameters related to the mixture of the binary fluid are, the Lewis number, L, that
controls the relaxation between the thermal and mass diffusion; and the separation ratio, c, measuring the
Soret effect. It comes from the analysis that the parameters Ra and Ta may span a range of several orders of
magnitude while G, which relates a typical relaxation time to the thermal diffusion time, usually changes by
only one order of magnitude. The remaining parameters P, L, L, and c depend only on the properties of the
fluid. A typical value for P is P � 10 (water). For L ¼ 1 one recovers a Newtonian fluid while for L ¼ 0 a
Maxwellian fluid is described. For aqueous suspensions of DNA L ranges between 10�5 and 10�4 [2] and
results in Ref. [12] suggest that the Deborah number could vary in the range G ¼ 0:121:2. Unfortunately, no
experimental data are available neither for the separation ratio c nor for the retardation time L, so we have
used a slightly negative value of c and several values of L.

The main results are displayed in Figs. 2 and 3, where we plot the critical Rayleigh number Rac and the
critical frequency Oc as function of the Deborah number G for L ¼ 10�4, c ¼ �10�4 and L ¼ ð0; 0:75; 1Þ; two
different Taylor number values are considered: Ta ¼ 10 (Fig. 2) and Ta ¼ 103 (Fig. 3), respectively. For the
lower value of rotation, Ta ¼ 10, when L ¼ 1 (Newtonian fluid) the critical values Rac (Fig. 2a) and Oc

(Fig. 2b) remain nearly constant and with relatively low values. Whereas both critical values are very high for
a purely Maxwell fluid ðL ¼ 0Þ, but they decrease when G is increased. For the intermediate value L ¼ 0:75,
the critical values first increase for low values of G, and then they slightly decrease when G is further increased.
Fig. 2. (a) Critical Rayleigh number Rac and (b) critical frequency Oc for oscillatory instability as function of the Deborah number G for a

low rotation rate Ta ¼ 10.
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Fig. 3. (a) Critical Rayleigh number Rac and (b) critical frequency Oc for oscillatory instability as function of the Deborah number G for a

high rotation rate Ta ¼ 103.
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The case of a high rotation rate, Ta ¼ 103, is shown in Fig. 3. The curves show that rotation stabilizes a
Newtonian fluid [6], but it destabilizes a Maxwellian fluid [9]. For intermediate values of L ðL ¼ 0:75Þ,
viscoelastic properties couple with rotation to lower the convective threshold Rac and rise the critical frequency
Oc with respect to the values for a Newtonian fluid. Therefore,in the case of Maxwellian and Newtonian fluids
the effect of rotation is opposite, destabilizing and stabilizing, respectively.

Let us comment about some differences related to the choice of boundaries conditions i.e. free–free or
rigid–rigid. In a previous work [10], the case of idealized boundary conditions (free–free) has been analyzed
and it has been found that, for the Maxwellian viscoelastic fluid, two distinct regimes were observed [10]. For
the critical Rayleigh number and the critical frequency: small values of G lead to small critical frequencies
regardless of rotational effect; for intermediate values of G, Oc jumps to a finite value that decreases by further
increasing G. Moreover, the value for which Oc jumps increases with Ta; also we recall that this transition
feature appear also for non-rotating system [4]. In contrast, in the present analysis where rigid–rigid
boundaries conditions are considered there is no such transition neither for non-rotating [4] nor for rotating
convection; furthermore, we observe that for Maxwellian viscoelastic fluid Rac is a decreasing function of G
irrespective of the rotation rate.
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4. Conclusions

In the present work we have analyzed the instability thresholds in suspensions of DNA under rotation for
realistic rigid–rigid boundary conditions. We have shown that viscoelastic properties stabilize convection
under a small rotation rate; on the contrary, they may produce a destabilizing effect for sufficiently high
rotation rates, although rotation stabilizes convection in Newtonian fluid. These results suggest that rotation
can be used as a tool to enhance the range of the laminar regime of convective cycler to replicate DNA in
aqueous solutions.
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