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Las Palmeras Molecular Dynamics (LPMD) is a highly modular and extensible molecular dynamics (MD)
code using interatomic potential functions. LPMD is able to perform equilibrium MD simulations of bulk
crystalline solids, amorphous solids and liquids, as well as non-equilibrium MD (NEMD) simulations such
as shock wave propagation, projectile impacts, cluster collisions, shearing, deformation under load, heat
conduction, heterogeneous melting, among others, which involve unusual MD features like non-moving
atoms and walls, unstoppable atoms with constant-velocity, and external forces like electric fields. LPMD
is written in C++ as a compromise between efficiency and clarity of design, and its architecture is based
on separate components or plug-ins, implemented as modules which are loaded on demand at runtime.
The advantage of this architecture is the ability to completely link together the desired components
involved in the simulation in different ways at runtime, using a user-friendly control file language which
describes the simulation work-flow.
As an added bonus, the plug-in API (Application Programming Interface) makes it possible to use the
LPMD components to analyze data coming from other simulation packages, convert between input
file formats, apply different transformations to saved MD atomic trajectories, and visualize dynamical
processes either in real-time or as a post-processing step.
Individual components, such as a new potential function, a new integrator, a new file format, new
properties to calculate, new real-time visualizers, and even a new algorithm for handling neighbor lists
can be easily coded, compiled and tested within LPMD by virtue of its object-oriented API, without the
need to modify the rest of the code.
LPMD includes already several pair potential functions such as Lennard-Jones, Morse, Buckingham, MCY
and the harmonic potential, as well as embedded-atom model (EAM) functions such as the Sutton–Chen
and Gupta potentials. Integrators to choose include Euler (if only for demonstration purposes), Verlet and
Velocity Verlet, Leapfrog and Beeman, among others. Electrostatic forces are treated as another potential
function, by default using the plug-in implementing the Ewald summation method.
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Licensing provisions: GNU General Public License version 3
No. of lines in distributed program, including test data, etc.: 509 490
No. of bytes in distributed program, including test data, etc.: 6 814 754
Distribution format: tar.gz
Programming language: C++
Computer: 32-bit and 64-bit workstation
Operating system: UNIX
RAM: Minimum 1024 bytes
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Nature of problem: Study of Statistical Mechanics and Thermodynamics of condensed matter systems, as
well as kinetics of non-equilibrium processes in the same systems.
Solution method: Equilibrium and non-equilibrium molecular dynamics method, Monte Carlo methods.
Restrictions: Rigid molecules are not supported. Polarizable atoms and chemical bonds (proteins) either.
Unusual features: The program is able to change the temperature of the simulation cell, the pressure, cut
regions of the cell, color the atoms by properties, even during the simulation. It is also possible to fix the
positions and/or velocity of groups of atoms. Visualization of atoms and some physical properties during
the simulation.
Additional comments: The program does not only perform molecular dynamics and Monte Carlo
simulations, it is also able to filter and manipulate atomic configurations, read and write different file
formats, convert between them, evaluate different structural and dynamical properties.
Running time: 50 seconds on a 1000-step simulation of 4000 argon atoms, running on a single 2.67 GHz
Intel processor.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Classical Molecular dynamics (MD) simulation has been a pow-
erful tool since their development in 1960s to study dynamic sys-
tems of interacting atoms in various fields, like chemistry, physics
and material science. The molecular dynamics method consists
in the numerical integration of the Newton’s equation of motion
for the atomic positions in a condensed matter system. In or-
der to compute the forces needed to obtain the atomic velocities
(which in turn are needed to obtain the atomic positions), we
need some kind of interatomic potential describing the interaction
between different atoms. Fully empirical and also semi-empirical
interatomic potentials have been used in the last decade to suc-
cessfully represent different kinds of materials, from inert gases [1]
to metals [2], carbon-based molecules and structures, crystalline
and amorphous [3,4] metallic oxides, among others. The advantage
of the classical molecular dynamics method, compared with ab ini-
tio methods, which are more exact, is the ability to handle large
numbers of atoms. In a typical simulation, hundred of thousands
or even several million atoms can be treated [5,6].

Although there are many general purpose MD codes, they are
usually subjected to design limitations (arising mostly due to ef-
ficiency considerations) that allows only the study of certain sys-
tems and conditions. Most codes cannot handle in an easy way
the requirements of some setups, such as free (i.e., non-periodic)
boundary conditions, variations of density inside a sample, or
highly out-of-equilibrium initial states. It might be possible to
modify these codes to lift some of the limitations, but it could
be cumbersome and error-prone. For these cases, a more flexible
MD code is needed, even though some performance could be sac-
rificed.

In this spirit, we have developed Las Palmeras Molecular Dy-
namics (LPMD), a completely modular MD program. This program
consists of a set of replaceable pieces which can be linked together
in different ways to accommodate the needs of a non-standard MD
simulation. Beyond that, the user can also perform post-simulation
analysis, convert between input/output formats and prepare sam-
ples with ease. The modular design also improves efficiency in
some cases. It also allows the user to add new pieces (integra-
tion methods, interatomic potentials, properties, file formats, and
many others) without the need of knowing the whole code.

2. Theoretical background

As mentioned before, the foundation of the method is taking
Newton’s equations of motion for each atom i,

mi
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The potential function can be chosen from different alternative
functional forms depending on the complexity of the interactions
in the real material. For the case where the interatomic interac-
tions are simple enough to be modelled by a pair potential func-
tion φ(r), which depends only on the distance r between a pair of
atoms, we have
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where ri j = |−→ri − −→r j |. In this case, the force on each atom is given
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The most typical pair potential function is the Lennard-Jones
potential [7], defined by
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where σ and ε are parameters fitted to match experimental prop-
erties of the desired material. For the case of Ar, σ = 3.41 Å and
ε = 120 K kB .

More complex systems require not only pair interactions but
may include three-body or four-body terms. Alternatively one can
model the interactions of the atoms in a metal by including a
“mean-field” background potential F associated with the freely
moving electrons. This kind of model is known as the Embedded
Atom Model (EAM) [8]. The general form of these potentials is
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One form of the EAM, called the Sutton–Chen [9] potential, fur-
ther defines the functions φ(r) and the background potential F (ρ)

as

φ(r) = ε
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, (7)

F (ρi) = −εC
√

ρi, (8)

where ρi represents the volumetric density of electrons acting on
the atom i, and is also computed as a sum over pair contributions
ψ(r) due to surrounding atoms,
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∑

ψ
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)
, (9)
j �=i



2128 S. Davis et al. / Computer Physics Communications 181 (2010) 2126–2139
Fig. 1. The execution flow for an MD simulation in a typical MD code.
and where

ψ(r) = ε

(
a

r

)m

. (10)

Besides the choice of interatomic potentials, there are also
many different numerical integration algorithms available for solv-
ing Eq. (1), with different precision and computational costs. One
such integration procedure is the Verlet algorithm [1],

−→ri (t + �t) = 2−→ri (t) − −→ri (t − �t) + −→ai (t)�t2 + O
(
�t4), (11)

where �t is the time step used for the discretization of the differ-
ential equation (1), and −→ai = (1/mi)

−→
Fi is the acceleration “felt” by

atom i.
Note that Eq. (11) only propagates the positions, the velocities

are not explicitly propagated in time. Instead, one computes them
indirectly from the centered-difference expression for the deriva-
tive of the coordinates,

−→vi(t) =
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2�t
+ O

(
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One improvement over the Verlet algorithm described above is
the so-called Velocity Verlet algorithm [10], which improves the
computation of velocities at the cost of requiring an additional
update of the accelerations (and therefore the forces) at the step
being calculated, t + �t . The Velocity Verlet algorithm is imple-
mented through the following equations,
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2
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Here we can see that, if the MD simulation does not require a
high precision in the velocities, we could prefer the Verlet algo-
rithm because it involves just one evaluation of the forces instead
of two for the case of Velocity Verlet (conversely, to avoid evalu-
ating forces twice it is possible to store the forces at the previous
step, with an additional memory cost).

However, if the MD simulation involves the computation of
quantities involving velocities such as the velocity autocorrelation
function, then it is imperative to use an algorithm computing the
velocities with higher precision.

The early way of doing MD was to implement a “taylor-made”
computer program with precisely the chosen algorithms for nu-
merical integration of the equations of motion and computation of
the interatomic potential and forces. Thus, one different computer
code for each system to be simulated.

The next stage in MD computer codes is the ability to choose
the interatomic potential function at runtime (i.e., every time the
program is executed, without the need to recompile for every
change) along with all the other options such as the time step used
for integration, total simulation time, initial conditions of pressure
and temperature and so on. This has led to “general purpose” MD
codes such as Moldy [11] and DLPOLY [12] among many others.
While the ability to choose the potential function is commonplace
nowadays, very few computer codes offer the choice of changing
the integration algorithm at runtime, although several have the
choice at compile-time (i.e., during the compilation stage).

From a general point of view, the MD procedure consists of four
main stages, namely: (a) the initialization of the sample, (b) the
calculation of interatomic forces, (c) the integration of the equa-
tions of motion, and (d) collecting statistics and the computation
of properties. This is shown schematically in Fig. 1.

When the MD simulation that we intend to perform is not
standard, for example in the case of simulations far away from
thermodynamic equilibrium (high velocity impacts, shockwaves)
or non-standard potential functions and forces (for example fric-
tion forces or external fields) one can clearly see the need for a
hybrid approach between the “taylor-made” MD code (containing
exactly the algorithms we need for a given simulation) and the
“general purpose” MD code (with several choices available at run-
time and compile-time). We would want to replace “pieces of the
program” at will, including (but not limited to) integration meth-
ods, potential functions and other algorithms, such as the one re-
sponsible for computing interatomic distances or the “thermostat”
algorithms used to control the applied temperature or pressure
in an isothermal-isobaric (NPT) MD simulation. Here the “general
purpose” approach is not general enough, only allowing some lim-
ited choices.

3. Overview of the software structure

Our design goal with LPMD is to have an MD code built only
upon individual components, which could be rearranged at will to
“assemble” many different kinds of MD simulations. This idea is
not limited to the MD simulation itself, as the individual compo-
nents could be reused for other purposes, such as post-simulation
analysis of samples, or preparation of the initial configuration to
be used as an input for an MD simulation. The proposed new de-
sign (which is, in fact, already implemented in LPMD) is shown
schematically in Fig. 2.
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Fig. 2. The execution flow for an MD simulation as implemented in LPMD. Unlike Fig. 1, now the dashed lines represent a “placeholder” where many different pieces can fit.

Fig. 3. Scheme showing some of the class hierarchies defined in the LPMD API.
We achieve this goal of interchangeable components using an
object-oriented design. For this we designed and implemented a
comprehensive API (Application Programming Interface), contain-
ing classes and interfaces representing each of the fundamental
components in Fig. 2. This might be better explained by looking
at the API hierarchies shown in Fig. 3. In this figure the solid-line
boxes represent classes, i.e., specialized version of abstract ideas or
interfaces (depicted by dashed-line boxes). As a concrete example,
we can see that the lennardjones potential is a particular im-
plementation of the abstract idea of a pairpotential, which in
turn, is a specialization of the more general idea of a potential.

This hierarchic design ensures two things. First, all compo-
nents that inherit from a common interface share common at-
tributes. For instance, all pair potential components (such as
lennardjones and buckingham) have a pair-defined energy
φ(r) and a force

−→
F (

−→r ). Second, only the more specific details
must be filled in when implementing a new component. Being also
a potential (indirectly through pair potential), lennardjones
can automatically compute system-wide energies Φ and atomic
forces

−→
F i .

The design presented in Fig. 2 shows only the typical compo-
nents in an MD execution flow. In order to have a finer control
over the simulation process, we have extended this design, creating
additional components and hierarchies. Among the new compo-
nents, perhaps the one deserving a detailed explanation, is the
CellManager, introduced to decouple the computation of distances
from the force loop.

3.1. CellManagers

One of the most computationally expensive stages (if not the
most) in the MD procedure is the calculation of interatomic forces.
Several algorithms have been proposed in order to handle this
task (from the standard minimum image loop to more advanced
techniques like the Verlet neighbors list and the link-cell algo-
rithm) and, in analogy with the different integration algorithms
or potential functions, we have decided to encapsulate the task of
computing the interatomic distances and building neighbor lists in
a separate component, namely, the cellmanager. The advantage of
making the cellmanager an interchangeable component is flexibil-
ity, as the different algorithms may perform with different degrees
of efficiency. For example, the simple minimum image loop is more
efficient than the more complex algorithms in the case of very
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small (i.e., less than two hundred atoms) systems, but the trend
reverses around one thousand atoms [13].

All the available cellmanagers are shown in Fig. 4.

4. Implementation

LPMD was implemented in the C++ language, taking full ad-
vantage of its object-oriented capabilities: a hierarchy of classes
and interfaces and polymorphism through virtual methods and
templates. The interchangeable components are implemented as
plug-ins, which are in fact dynamic libraries loaded at runtime. The
API is implemented as a shared library, providing the base classes
and interfaces which every plug-in must implement, as well as
helper functions used through the code. The applications are the
implementation of the diagram depicted in Fig. 2 and provide a
user-friendly end-user interface to run simulations, obtain proper-
ties and apply transformations over sets of atomic configurations.

Fig. 4. Scheme showing the different cellmanagers available.
4.1. API

The API is composed of three types of elements: (a) base classes
providing reusable basic components like Array, Matrix, and Vec-
tor, among others, (b) abstract interfaces providing generic algo-
rithms via virtual methods, which derived classes must implement,
and (c) utility or helper functions, which encapsulate routine tasks
such as string processing. An example of the use of abstract inter-
faces is shown in Figs. 5 and 6. In Fig. 5, the PairPotential
interface is declared, providing the virtual methods pairEnergy
and pairForce, which are the only methods a class inheriting
from PairPotential (i.e., any pair potential) must implement.
This allows the coding of a new pair potential only by writing two
method implementations, as shown in Fig. 6 for the case of the
Lennard-Jones potential plug-in.

4.2. Plug-ins

The dynamic loading of plug-ins is encapsulated in an API com-
ponent called PluginManager. A PluginManager object provides
an interface for loading and unloading plug-ins by name, as well as
an associative array (or “dictionary” in other languages, like Python
or Perl) interface for retrieving references to “live” plug-ins already
loaded. Once loaded, a reference to a Plugin object is kept in mem-
ory, which then can be cast down into a particular kind of base
class reference, such as Potential or Integrator. The LoadPlugi-
nAs method does the loading and casting in one call. In Fig. 7 we
can see an example showing the use of a PluginManager object.

4.3. Applications

Having a set of plug-ins and the PluginManager object, we
can write simple programs or applications using the LPMD API,
class PairPotential: public Potential
{
public:
PairPotential();
virtual ~PairPotential();

double energy(Configuration & conf);
double AtomEnergy(Configuration & conf, long i);
void UpdateForces(Configuration & conf);

virtual double pairEnergy(const double & r) const = 0;
virtual Vector pairForce(const Vector & r) const = 0;

};

Fig. 5. PairPotential, the base class for all pair potential functions in LPMD.

double LennardJones::pairEnergy(const double & r) const
{
double rtmp=sigma/r;
double r6 = pow(rtmp,6.0);
double r12 = r6*r6;
return 4.0*epsilon*(r12 - r6);

}

Vector LennardJones::pairForce(const Vector & r) const
{
double rr2 = r.SquareModule();
double r6 = pow(sigma*sigma/rr2, 3.0);
double r12 = r6*r6;
double ff = -48.0*(epsilon/rr2)*(r12 - 0.50*r6);
Vector fv = r*ff;
return fv;

}

Fig. 6. Implementation of the virtual methods from PairPotential in the lennardjones plug-in. Note how we just specify in the LennardJones class the pair
potential function φ(r) and its derivative dφ/dr. The methods in its base class, PairPotential, are in charge of handling the sum over all possible pairs, and other details
such as the cut-off radius.
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// Create a plug-in manager instance
PluginManager pm;

// This loads the ’linkedcell’ plug-in, getting a reference to
// a CellManager object
CellManager & cm = pm.LoadPluginAs<CellManager>("linkedcell",

"cutoff 8.5 nx 14 ny 14 nz 14");
// This loads the ’lennardjones’ plug-in, getting a reference to
// a Potential object
Potential & pot = pm.LoadPluginAs<Potential>("lennardjones",

"sigma 3.41 epsilon 0.0103408 cutoff 8.5");
// This loads the ’beeman’ plug-in, getting a reference to
// an Integrator object
Integrator & integ = m.LoadPluginAs<Integrator>("beeman", "dt 1.0");

Fig. 7. Use of a PluginManager instance to load plug-ins.

Simulation & md = SimulationBuilder::CreateFixedOrthogonal(108, Atom("Ar"));
BasicCell & cell = md.Cell();
cell[0] = 17.1191*e1;
cell[1] = 17.1191*e2;
cell[2] = 17.1191*e3;

PluginManager pm;

BasicParticleSet & atoms = md.Atoms();

CellGenerator & cg = pm.LoadPluginAs<CellGenerator>("crystal3d",
"type fcc symbol Ar nx 3 ny 3 nz 3");

cg.Generate(md);

CenterByCenterOfMass(atoms, cell);
md.SetCellManager(pm.LoadPluginAs<CellManager>("linkedcell",
"cutoff 8.5 nx 7 ny 7 nz 7"));

Potential & pot = pm.LoadPluginAs<Potential>("lennardjones",
"sigma 3.41 epsilon 0.0103408 cutoff 8.5");

Array<Potential &> & potentials = md.Potentials();

pot.SetValidSpecies(18, 18);
potentials.Append(pot);

md.SetTemperature(168.0);
md.SetIntegrator(pm.LoadPluginAs<Integrator>("beeman", "dt 1.0"));

potentials[0].Initialize(md);
potentials[0].UpdateForces(md);

for (long i=0;i<5000;++i)
{
md.DoStep();
if (i % 100 == 0)
{
double temp = Temperature(atoms);
std::cout << i << " " << temp << std::endl;

}
}

Fig. 8. A simple MD example using the LPMD API to simulate 108 atoms of argon in the microcanonical ensemble for 5000 steps.
which can in principle, accommodate any need, just as with the
“taylor-made” computer codes, the only difference being that, now
we just need to interconnect different pieces. An example of this
approach is the simple MD example code shown in Fig. 8, which
simulates 108 atoms of argon interacting with the Lennard-Jones
potential in the microcanonical ensemble (i.e., at constant total en-
ergy but fluctuating kinetic and potential energy).

Apart from the direct use of the API to combine different plug-
ins into a “taylor-made” MD application, a task requiring some
knowledge of C++ programming, the LPMD package provides its
own ready-to-use “general purpose” applications or utilities: lpmd,
lpmd-analyzer, lpmd-converter and lpmd-visualizer:

• lpmd-analyzer: This application is capable of calculating
temporal or instantaneous properties of a sample, such as
the radial distribution function, velocity autocorrelation func-
tion, mean square displacement, coordination neighbor analy-
sis, and others (see Tables 6 and 7).

• lpmd-converter: This application is capable of building
crystal structures, convert between file formats (from CONFIG
dlpoly’s file to an xyz), apply filters and modifiers (see Sec-
tion 7 and Tables 4 and 5), assign colors and others.

• lpmd-visualizer: This application is in charge of execut-
ing LPMD’s own graphic visualizer (based in OpenGL), lpvi-
sual as well as text visualizers, such as printatoms, that
displays the atoms positions on the screen (see Table 11).

These applications are internally far more complex than the
demonstration code shown in Fig. 8, as they are designed to read
the complete description of the simulation at run-time, be it from
an input file, or even from command-line flags or switches without
the need for an input file. Despite the complexity of the applica-
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#This is a comment. Comments are used usually as a title:
#########################################
# System file of Au crystal using LPMD #
#########################################
cell cubic 28.56
input module=lpmd file=300K-Gold.lpmd level=1
output module=lpmd file=au.lpmd each=15 level=1
periodic false true true
steps 5000

#Integrator
use velocityverlet as vv

dt 1.0
enduse

#CellManager

use linkedcell
mode auto
cutoff 7.5

enduse

# Sutton-Chen Potential (parameters for gold)
use suttonchen as sc

e 0.013
n 10
a 4.08
m 8
c 34.408
cutoff 7.5

enduse

#- Plugins using -#
integrator vv
cellmanager linkedcell
potential sc Au Au

Fig. 9. Example of an LPMD control file. The components are loaded (use...enduse) and then applied.

LPMD 2.0 L
HDR SYM X Y Z VX VY VZ rgb
9703
70.395 0 0 4.31045e-15 70.395 0 9.18485e-15 9.18485e-15 150
Cu 0.474872 0.448718 0.950733 0 0 -0.04 <1,1,1>
Cu 0.526154 0.448718 0.950733 0 0 -0.04 <1,1,1>
Cu 0.449231 0.474359 0.950733 0 0 -0.04 <1,1,1>
Cu 0.474872 0.474359 0.9387 0 0 -0.04 <1,1,1>
Cu 0.474872 0.5 0.950733 0 0 -0.04 <1,1,1>
Cu 0.500513 0.5 0.9387 0 0 -0.04 <1,1,1>

Fig. 10. Example of an input/output file in lpmd format. The first line indicates the version of LPMD (2.0) and type of data (L means normal, Z means compressed), the
second are the headers (HDR) of the columns: atomic Symbol (SYM), atomic 3D positions (X Y Z), atomic 3D velocities (VX VY VZ) and color of each atom in red-green-blue
format (rgb). The third line indicates the number of atoms in the simulation, while the fourth one gives the basis vectors that forms the cell, which could be non-orthogonal.
tions, their usage is very simple from the user point of view as we
will see in the next section.

Using the LPMD utilities, the user can combine all the available
plug-ins to perform many kinds of MD simulations, post-simulation
analysis and visualization of samples (which can even be imported
from other MD programs) and modification or filtering of atomic
configurations to use in new MD simulations (for example build
mixed-phase systems, projectiles and targets for High Velocity Im-
pact (HVI) simulations, etc.). Doing all of this is possible without
any programming knowledge.

5. General input format

5.1. Control files

All the LPMD utilities (lpmd, lpmd-converter, lpmd-
analyzer and lpmd-visualizer) can be executed via com-
mand line through single-line-commands where all the instruc-
tions to execute a specific molecular dynamics task are given. But
sometimes the instructions are too many and typing a long single-
line-command could be inconvenient and hard to read. In those
cases it is more appropriate to make a script in a file to execute it
later. This file is called a control file.

An LPMD control file is shown in Fig. 9. This figure shows the
most basic example of an LPMD molecular dynamics run. The first
non-commented line creates a cubic cell of 28.56 Å (Å being the
default LPMD’s distance unit) in length. Then the input and output
files are set in “lpmd” format (see Fig. 10), writing the output data
each 15 steps. The level=1 flag means that the corresponding
file will contain 6 columns, representing the 3-dimensional po-
sition and velocity of the atoms, plus a column containing the
atomic symbol of each atom, whereas level=0 means just po-
sitions and level=2 represents positions, velocities and acceler-
ations. Then, the number of simulation steps is set. The last steps
are: setting an integrator of the differential equations of motion,
a cellmanager and an interatomic potential, whose gradient will
be the force in the equations of motion. The time step dt used
here is measured in femtoseconds (the default LPMD’s time unit).
In this example, 5000 simulation steps of 1.0 femtosecond, means
5 picoseconds of total simulation time.
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cell cubic 17.1191
input crystal3d type=fcc symbol=Ar nx=3 ny=3 nz=3
prepare temperature t=168.0
monitor step,temperature start=0 end=5000 each=100
steps 5000
use lennardjones

sigma 3.41
epsilon 0.0103408
cutoff 8.5

enduse
use beeman

dt 1.0
enduse
use linkedcell

cutoff 8.5
nx 7
ny 7
nz 7

enduse
potential lennardjones Ar Ar
integrator beeman
cellmanager linkedcell

Fig. 11. A simple control file using the lpmd utility to simulate 108 atoms of argon in the microcanonical ensemble for 5000 steps.

#########CELL###########
cell cubic 17.1191

#########INPUT##########
input module=xyz file=output.xyz inside=true

#########MODULES######
use minimumimage
cutoff 8.0
debug none
enduse
use msd
output msd.dat
enduse

##########APPLY########
cellmanager minimumimage
property msd

Fig. 12. A control file for lpmd-analyzer.
After all the integrators, potentials and plug-ins are set, they are
called in the last 3 lines of this example.

To show its convenience and how easy to use a control file is
(instead of c++ programming), an example is shown in Fig. 11,
where the same effect of the MD demo shown in Fig. 8 can be
achieved by running the control file. This file is later executed with
the command lpmd.

The other utilities, mentioned before, work with the same kind
of control files as well and, in fact, they all share the same syn-
tax and keywords. In Fig. 12 an example of a control file, designed
for lpmd-analyzer to calculate the mean-square-displacement
(msd) of the atoms contained in the output.xyz file and using
the minimumimage cell manager, is shown.

Fig. 13 is an example of a control file written for lpmd-

converter. This control file creates an fcc structure in a 50 Å
length simulation cell. Then the atoms inside the box region de-
fined by 0 < x < 50, 0 < y < 50 and 0 < z < 20 and outside the
sphere centered in (25,25,10) Å with radius 15 Å are saved into
the file data.xyz.

This kind of configurations (drilled slices of materials) could be
used to create for example, defects on the material or make grafts
of one material inside another, embedding a crystal into a liquid,
among other non-trivial uses.
5.2. Allowed formats

As we saw in Fig. 9, the input file is given in the control file
by the input module=lpmd command. In this case, some spe-
cific options can be given to the module lpmd (file and level).
But other formats are available, like xyz, CONFIG (from dlpoly),
POSCAR (from vasp), zlp (compressed lpmd), mol2, pdb, raw-
binary (see Table 1). It is as simple as changing lpmd in the
example we saw by the desired format. For example, the line

input module=xyz file=configuration.xyz

loads the file configuration.xyz, which is written in the
widely used xyz format, specified by module. The output file
(specified by output in Fig. 9) can be written using any avail-
able file format module, following the same structure as input.

Another kind of inputs are the cell generator plugins in-
cluded in LPMD. For example, the crystal3d plugin “creates”
a monoatomic crystal by specifying the type of crystal (bcc, fcc,
sc, . . .) the amount of repetitions of the primitive cell in each axis,
and the atomic symbol of the element:

input module=crystal3d type=fcc symbol=H

nx=8 ny=8 nz=8

Note that, although crystal3d is not a file format, it is also a
module and can be used as an input.
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cell cubic 50

input crystal3d nx=16 ny=16 nz=16 symbol=N type=fcc
output xyz file=data.xyz

filter box x=0-50 y=0-50 z=0-20

filter sphere radius=15 center=<25,25,10> inverse=true

Fig. 13. A control file for lpmd-converter.

# Temperature Scaling: Rise from 300K to 500K

use tempscaling as ts
from 300
to 500

enduse

# Cell Scaling

use cellscaling as cs
percent 0.01
axis all

enduse

apply cs start=0 end=20000 each=200
apply ts start=1000 end=2000 each=50

Fig. 14. Portion of a control file showing the calling and applying of modifiers.
6. The simulation cell

An LPMD simulation cell consists of a set of atoms, 3 basis vec-
tors, the volume enclosed by these three vectors, and attributes
such as periodic boundary conditions. A simulation cell keeps track
of the atoms inside or outside of it. Its shape can be orthogonal or
non-orthogonal, this being determined only by the basis vectors.
This is specified using the cell command as we saw in the pre-
vious examples. For the case of non-orthogonal cells, the cell
vector command is used.

The simulation cell is an object, and just as the other LPMD ob-
jects (vectors, atoms, particle sets) it can be modified during or
after the simulation. Some of the modifications that LPMD can ap-
ply over the whole (or a region) of the simulation cell are the cell
scaling (stretch and compress), temperature rising (or lowering)
and cutting of some spatial region (cubic, cylindrical or spherical
extraction of atoms).

All of these modifications are possible during or after the sim-
ulation, by using the filters and modifiers provided by LPMD which
we are going to discuss now.

7. Modifiers, filters and tags

7.1. Modifiers applied over the simulation cell

Modifiers are a type of plug-ins, whose task is, as the name
suggests, to apply modifications to the atoms or to the whole sim-
ulation cell itself.

The modifiers that can be applied to the whole simulation cell
can do things like shearing, temperature rising, compressing and
expanding the volume of the cell.

An example of a modifier is shown in Fig. 14, in which the
temperature is increased from 300 K to 500 K during 1000 MD
steps (each 50 MD steps), while the whole cell is submitted to a
hydrostatic expansion for the first 20 000 MD steps (each 200 MD
steps) through the rescaling of the basis vectors in 0.01% of their
former value in each application.
7.2. Filters

In the nomenclature used in LPMD, filter means atom selection.
If used without a modifier (see 7.1), a filter performs atom elimi-
nation. They are used to select certain types of atoms or regions
of the simulation cell, eliminating every non-selected atom. Con-
versely (just adding inverse=true), it can be used to eliminate
only the selected atoms.

Some type of filters available are:

• Box: Select the atoms that are in the region [xMIN, xMAX] ×
[yMIN, yMAX] × [zMIN, zMAX]. Usage:

filter box x=0-5 y=0-6 z=10-15,

meaning the set of points [0,5] × [0,6] × [10,15] in the re-
spective directions. This eliminates all the atoms of the cell
except the ones belonging to the selected region.

• Element: Select the atoms by element (hydrogen, oxygen, ar-
gon). Usage:

filter element symbol=Au.

This eliminates every atom except the gold ones.
• Index: Select atoms by their index in the simulation cell. It

is commonly used to eliminate the first or last added atoms.
Usage:

filter index index=1-50.

This eliminates the atoms within the given range.
• Tag: Select atoms by a given label (tag). An example of Tag

usage is identifying the atoms that form a “bullet” to study
HVI. Usage:

filter tag name=fixedpos value=true.

This eliminates all non-moving atoms (fixed position). In the
case of the bullets, you can select a set of atoms and put a tag
named bullet, then execute

filter tag name=bullet

to eliminate all the atoms that are not the bullet.
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Fig. 15. A filtered fcc crystal. A box filter was applied first to leave the half of the cube (left) and then a sphere filter was used to make a “hole” inside the “plane” of
atoms (right).

use setvelocity
velocity <0,0,0.05>

enduse

apply setvelocity start=0 end=1 each=1 over box x=0-26.3 y=0-26.3 z=0-7.0

Fig. 16. Assigning a velocity vector to a box of atoms (piece of a control file).

use setcolor as white
color <1,1,1>
debug none

enduse

apply white start=0 end=-1 each=1 over index index=0-99

Fig. 17. Assigning color to the first 100 atoms in the list (piece of a control file).
• Sphere: Select atoms inside a spherical region. Usage:

filter sphere radius=10 center=<10,40,25>.

This eliminates all the atoms that do not belong to the sphere
with center in (10,40,25) Å and radius 10 Å. As mentioned
before, it is possible to do the opposite, eliminating just the
atoms inside the sphere with

filter sphere radius=10 center=<10,40,25>

inverse=true.

The images shown in Fig. 15 (taken from LPMD’s own visualizer,
lpvisual) show a cubic cell of 50 Å size with 4432 atoms after a
filtering process.

7.3. Modifiers applied over sets of atoms

Modifiers are strongly linked to the filters, because the filters
can select the atoms to which the modifications are applied.

Besides the modifiers already mentioned, there are modifiers
for applying rotations and translations to the atoms, velocity
rescaling, removing atoms, coloring them and others. A complete
list of modifiers is given in Appendix A (Table 5).
Some examples of modifiers are shown in Figs. 16 to 20. Fig. 16
shows how to assign a uniform velocity to a group of atoms se-
lected using a box filter, and Fig. 17 shows that a color can be
assigned in the same way, using the setcolor plug-in instead of
setvelocity. Note also that the atoms to be colored white are
now filtered by index.

As a modular part of the code, modifiers, filters and tags have
the advantage of being applied either during or after the simula-
tion is made. An example of this is shown in Fig. 18, where filters
and modifiers are combined to set up a high-velocity impact (HVI)
simulation.

Figs. 19 and 20 show the effect of a shockwave in solid argon,
also generated by combining filters and modifiers to create mobile
“pistons” and fixed “walls”.

8. Parallelization using OpenMP

Currently LPMD is able to take advantage of shared-memory
parallel architectures using the OpenMP API. For this effect, the
code must be compiled with the -openmp option. The usual
environment variables used by OpenMP apply: for example, the
number of threads or processors is specified by setting the
OMP_NUM_THREADS variable to the desired number.
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use setvelocity
velocity <0,0,0.05>

enduse

apply setvelocity start=0 end=1 each=1 over box x=0-26.3 y=0-26.3 z=0-7.0

use settag as projectil
tag fixedvel
value true

enduse

use settag as wall
tag fixedpos
value true

enduse

use settag as projwall
tag fixedpos
value true

enduse

apply proyectil start=0 end=1 each=1 over box x=0-26.3 y=0-26.3 z=0-7.0
apply proywall start=45 end=46 each=1 over tag name=fixedvel value=true
apply wall start=0 end=1 each=1 over box x=0-26.3 y=0-26.3 z=100.7-105.2

Fig. 18. Multiple modifiers on a single simulation are also possible (piece of a control file). The settag plug-in is used to label a group of atoms (defined on apply). In
the case of wall, the position of the atoms is set to constant (fixedpos) and the projectil remains with constant velocity (fixedvel), i.e., acts like an infinite-mass
body.

Fig. 19. A shockwave generated using modifiers. To the left, painted in white, the atoms with fixed velocities push the argon atoms as a piston, generating a shockwave,
whose atoms are colored by a temperature scale. To the right, also painted in white, atoms with fixed positions act as an immobile wall.

Fig. 20. A close-up to the shockwave shown above.
Fig. 21 shows the performance of LPMD using OpenMP up to 8
processors. Each simulation consisted on 500 MD steps for a sys-
tem composed of 20 000 Au atoms interacting via the embedded-
atom potential of Sutton and Chen. Each physical processor is an
Intel(R) Xeon(R) E5420 CPU running at 2.50 GHz.

9. Final remarks

We have developed a fully modular MD program for the study
of both equilibrium and non-equilibrium phenomena, as well as
bulk systems and highly inhomogeneous systems. This is achieved
by employing a hierarchical design and exploiting the benefits of
object-oriented programming. The program is written in standard
C++ which makes it portable across several platforms. All the com-
ponents can be rearranged in many different set-ups, from MD
simulation to post-simulation analysis and preparation of complex
samples.
We have also provided a wide range of examples describing the
capabilities of the code and illustrating the flexibility gained by its
design, as different kinds of problems can be solved just by linking
together a subset of all the available components.

Possible improvements include the parallelization of the code
using the Message-Passing Interface (MPI) libraries, as well as in-
ternal optimization. Every component already available is easy to
understand and modify, and new components from external par-
ties are possible (and encouraged) by using the open framework
or API we have developed.
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Appendix A

A.1. Input/output modules

Modules to manage the input/output files that contain the
atomic configurations (Table 1).

A.2. Cell generators

lpmd modules that create atomic cells automatically (Table 2).

A.3. Cellmanagers

Cellmanagers are encapsulated algorithms used by lpmd to di-
vide the simulation cell in different ways, so that each atom com-
putes the interactions only with its closest neighbors (Table 3).

A.4. Filters

Filters act over the simulation cell and are capable of selecting
atoms in different ways. If they are not used with a modifier, they
eliminate atoms (Table 4).

A.5. Modifiers

Modifiers apply various kinds of modifications to the simula-
tion cell and the atoms within, including rescaling of positions or
velocities, shearing, removing or randomly substituting atoms, etc.
(Table 5).

A.6. Instantaneous properties

This modules calculate properties of the studied atomic sample.
These are spatial properties independent of time, so they can be
calculated in each simulation step. They can also be averaged in
time. They can be calculated for a configuration (a single file) using
lpmd-analyzer or during the simulation (Table 6).

A.7. Temporal properties

They calculate temporal properties of the system. These prop-
erties cannot be calculated during the simulation, as they depend
Table 1
Input/output modules used by lpmd and its utilities.

Module Description

dlpoly Reading/writing of HISTORY and CONFIG dlpoly files
lpmd Own format of lpmd. Reading/writing support, 3 different

levels (positions, velocities, accelerations) and tags
vasp Reads POSCAR files. Used by the VASP software
xyz Reads xyz files. Like lpmd, it has 3 different levels
zlp Own format of lpmd to create compressed lpmd files

using zlib. 3 different levels
mol2 Reading/writing of mol2 files. Basic support
pdb Reading/writing of pdb files. Basic support
rawbinary Reading/writing of files in binary mode. Uses less

hard-disk space and works faster

Table 2
Cell generator modules used by lpmd and its utilities.

Module Description

crystal3d Three-dimensional cells generator
crystal2d Two-dimensional cells generator
voronoi Nano-structured cells generator using the Voronoi method
skewstart Cell generator using the skewstart method, developed by

K. Refson for the MD program, moldy

Table 3
Modules that manage the interaction between lists of atoms.

Module Description

linkedcell Manages the interaction lists using the Linked Cell method
minimumimage Manages the interaction lists using the minimum image

method
lcbinary Manages the interaction lists using the Linked Cell method

using 1 atom per subcell
verletlist Manages the interaction lists using the Verlet List method

Table 4
Modules that filter atoms in the simulation cell.

Module Description

box Selects atoms inside or outside a box of a given size
element Selects atoms by their atomic symbol
index Selects atoms by their index in the simulation cell
sphere Selects atoms inside or outside a sphere of a given radius

and center
tag Selects atoms by their tag (label)
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Table 5
Modifiers modules of the system.

Module Description

berendsen Temperature scaling of the cell using Berendsen’s
algorithm

cellscaling Volume scaling of the cell
displace Displace atoms
moleculecm Creates diatomic molecules from bonded atoms
propertycolor Color atoms by property
quenchedmd Structural minimization using Quenched MD (energy

minima searching)
randomatom Random elimination/selection of atoms
replicate Replicates the original cell
rotate Atom rotation
setcolor Assign some specific color to atoms
settag Assign a tag to the atoms
setvelocity Assign velocity to the atoms
shear Applies shearing to the simulation cell
temperature Assign temperature to groups of atoms
tempscaling Use simple velocity rescaling
undopbc Undo periodic boundary conditions

Table 6
Instantaneous properties provided by lpmd.

Module Description

angdist Calculates the angular distribution of the sample
cna Makes a Common Neighbor Analysis [14] of the sample
cordnumfunc Calculates the coordination number function of the

sample
cordnum Calculates the coordination number in histogram form
densityprofile Generates a density profile of the sample
gdr Calculates the pair distribution function of the sample
localpressure Generates a local pressures profile
pairdistances Search for pairs of atoms closer than a given distance
sitecoord Calculates the coordination number of individual atoms
tempprofile Generates a temperature histogram of the sample
veldist Generates a velocity profile of the sample

Table 7
Temporal properties provided by lpmd.

Module Description

dispvol Calculates the volume inside which the atoms diffuse
msd Calculates the mean square displacement
vacf Calculates the velocity autocorrelation function

on past and future instants. They can be calculated using lpmd-
analyzer taking as input the output files of a previous simula-
tion (Table 7).

A.8. Integrators

They are components used to propagate the state of the system
from one state to the next. They are not limited to the integra-
tion of Newton’s equation, for instance the metropolis plug-in
updates the system using a Monte Carlo algorithm (Table 8).

Appendix B. Pair potentials

Plug-ins providing different kinds of pair interatomic interac-
tions between the atoms in the system being simulated (Table 9).

B.1. Metallic potentials

They provide potential models for atomic interactions best
suited for metallic systems (Table 10).
Table 8
Integrators provided by lpmd.

Module Description

beeman Beeman integration algorithm
euler Euler integration algorithm
hardspheres Algorithm specialized in dynamics of hard spheres
leapfrog Leapfrog integration algorithm
metropolis Metropolis Monte Carlo method, used, for example,

for structural minimization
nullintegrator It does not move the atoms. Mainly used for testing

and benchmarks
velocityverlet Velocity Verlet integration algorithm
verlet Verlet integration algorithm

Table 9
Interatomic potentials provided by lpmd.

Module Description

buckingham Atomic interaction with Buckingham potential
harmonic Atomic interaction with harmonic potential
lennardjones Atomic interaction with Lennard-Jones potential
morse Atomic interaction with Morse potential
nullpairpotential Null atomic interaction. Mainly used for testing and

benchmarks
tabulatedpair Atomic interaction read from a data table

Table 10
Interatomic metallic potentials provided by lpmd.

Module Description

finnissinclair Atomic interaction with Finnis–Sinclair potential
gupta Atomic interaction with Gupta potential
nullmetalpotential Null atomic interaction. Mainly used for testing

and benchmarks
suttonchen Atomic interaction with Sutton–Chen potential

Table 11
Visualizers available in lpmd.

Module Description

average Average data visualizer during the simulation
lpvisual Graphic Molecular Dynamics visualizer based in OpenGL
monitor Instantaneous data visualizer during the simulation
printatoms Displays the position of the atoms on the screen

B.2. Visualizers

Used to obtain a picture or video of the simulation, or to dis-
play information in real time (Table 11).
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