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Abstract

We investigate the dynamic properties of a classical anisotropic Heisenberg chain interacting with an external

magnetic field at different temperatures. Properties such as time-dependent energy autocorrelation and space–time

spin–spin correlation are obtained by solving the dynamic equation _Si ¼ Si �rSi
H: While the static spin–spin

correlation length decreases as the system is heated up, it increases when an external magnetic field is present. The time-

dependent spin–spin correlation decreases when the system is heated up, resulting in a decrease of the spin-diffusion

speed. The presence of the magnetic field contributes to the order, and therefore produces an increase of the spin-

diffusion speed. In contrast, the single-ion type anisotropy behaves dynamically as a local field, inducing disorder in the

chain.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Since the discovery and fabrication of molecular
magnets composed by a small number of particles,
there has been a renewed and growing interest in
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low-dimensional magnetism [1]. In fact, nowadays
a wide number of molecular clusters containing
relatively a small number of magnetic ions can be
synthesized. In these structures, for example, the
magnetic moments can be symmetrically posi-
tioned in a simple ring, forming a unidimensional
ring-shaped magnetic structure [2–4]. It appears
that in most cases the magnetic properties of these
molecules are rather well described by the Heisen-
berg model with possibly small anisotropy correc-
tions [5,6]. From a theoretical point of view, these
d.
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models are not only able to explain the measured
properties, but also provide some general under-
standing of higher-dimensional magnetic systems.
In addition to those new molecular magnets,

there are several systems which are well repre-
sented by the one-dimensional Heisenberg model
within some range of temperature [7]. For
instance, the system CsNiF3 can be modeled by a
ferromagnetic Heisenberg chain with easy-plane
anisotropy for a temperature T44:4K and spin
S ¼ 1: Also, the compound tetramethyl ammo-
nium manganese trichloride (TMMC) is well
represented by an antiferromagnetic Heisenberg
chain for temperatures above 1.3K. Notice that
although one-dimensional magnetic systems have
in general a low-spin number S, and therefore
should be treated as quantum systems, the classical
approximation (i.e. S ! 1) is a good approxima-
tion in some cases [8].
Thermodynamical properties of one-dimen-

sional magnetic systems have been widely studied
from a theoretical point of view. In the classical
limit, analytical results exist when the number of
spins tend to infinity, such as the one by Fisher [9]
and Parsons [10] for the isotropic Heisenberg
model. Other results include the case of the
Heisenberg chain under external magnetic field
by Blume et al. [11], and with anisotropy by
Loveluck et al. [12]. When the analytical procedure
is not possible (for example, in a system with a
finite number of spins) the preferred technique has
been the Monte Carlo (MC) method [13].
Dynamical properties of classical Heisenberg

chains have been studied both analytically and
numerically [7,14]. The main interest in these
studies is the understanding of diverse dynamical
phenomena, such as spin waves and spin diffusion
processes, as well as inelastic neutron scattering
and spin-lattice dynamics. An important quantity
which allows to study such properties is the time-
dependent correlation function at different tem-
peratures. From a theoretical point of view, the
spin dynamics method, based on the numerical
solution of a Landau–Lifshitz-like equation, has
been proved to be very useful in the study of these
problems [15–18].
In this paper we are interested in the dynamic

spin–spin correlations and their dependence on the
anisotropy and magnetic field intensity, for several
different temperatures. We use a numerical proce-
dure which combines MC and spin dynamics
simulation. A description of the model and details
of the computational procedures are given in
Section 2. The results of the simulation are
presented in Section 3 and the conclusions are
drawn in Section 4.
2. Model and method

Our starting point is the classical one-dimen-
sional Heisenberg model with nearest-neighbor
interaction, planar anisotropy and external mag-
netic field, as described by the Hamiltonian

H ¼ �J
XN

i¼1

SiSiþ1 þ D
XN

i¼1

ðSz
i Þ
2
� h

XN

i¼1

Sx
i ; (1)

where the Si are three-dimensional classical
vectors of unit length and N is the number of
spins. The (ferromagnetic) exchange-coupling con-
stant is J40; the (easy-plane) single ion anisotropy
is represented by D40; and h ¼ gmBH is an
external magnetic field in the x direction. All
calculations were done on systems with up to N ¼

1000 spins, with periodic boundary conditions.
The value of J is taken to be 1 and the relevant
parameters of the model are D and h. A sketch of
the system is displayed in Fig. 1.
Spin dynamics is studied by solving a Land-

au–Lifshitz-like equation [7], _Si ¼ Si �rSi
H;

obtained from the classical limit of the quantum
dynamic equation i_ _Si ¼ ½Si;H�: For our model
this equation takes the form

_Si ¼ Si � ½JðSiþ1 þ Si�1Þ þ 2DSz
i ẑ � hx̂�; (2)

which is a set of coupled first-order-differential
equations. Here ẑ and x̂ are the unit vectors in the
z and x directions, respectively. These equations
are solved using the fourth-order Runge–Kutta
method, and the total integration time was 1000Dt

(time unit and integration step are explicited
below). As initial condition we choose a single
array of spins generated by standard Metropolis
Monte Carlo method [13] corresponding to a
particular set of parameters and temperature.
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Fig. 1. (a) The actual system, represented as a closed chain due to its periodic boundary conditions. (b) The equivalent system in its

reference frame, with the chain laying along the y-axis.
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From the time evolution of these arrays of spins,
time-correlation functions are calculated, and
therefore the dynamical properties can be ob-
tained.
3. Results

The results we present are given in dimensionless
units corresponding to the values of the system
CsNiF3; which is taken for reference purposes.
Hence, the temperature is measured in terms of
J=kB ¼ 18K, the energy in units of
J ¼ 1:551meV, and the time unit is
t ¼ _=J ¼ 0:424 ps. The typical value for the
anisotropy is D ¼ 0:33J and for the magnetic field
is h ¼ 0:1J; and the time step used to integrate Eq.
(2) is Dt = 0.01t:
The most useful quantity concerning dynamic

properties is the spin–spin time-dependent correla-
tion function. This kind of correlation functions
give information about the behavior of the system
in time. For example, Fig. 2 shows the space–time
energy autocorrelation function, computed

Ceðr; tÞ ¼
1

N

X
i

Eið0ÞEiþrðtÞ

Eið0Þ
2

* +
(3)

for three different temperatures. It can be seen that
the energy of a given site fluctuates in time for all
three cases. This can be explained by analyzing the
dynamic Equation (2). In the isotropic case
(D ¼ h ¼ 0), these fluctuations are associated to
the spin rotation of the site due to misalignments
with its nearest neighbors. The size of these
fluctuations increases with temperature.
We can gain further insight into the nature of

dynamic properties by means of the space–time
spin–spin correlation function Csðr; tÞ defined as

Csðr; tÞ ¼
1

N

X
i

Sið0ÞSiþrðtÞ

* +
; (4)

where r denotes the spin sites. This is equivalent to
the van Hove correlation function used in the case
of a particle system.
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Fig. 2. Space–time energy autocorrelation function for three different temperatures and D ¼ h ¼ 0: The curves represent, from top to

bottom, the correlation between sites r ¼ 0; 1; 2; 3 and 4, respectively.
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Fig. 3. Spatial dependence of the spin–spin correlation function

for the isotropic case (D ¼ h ¼ 0), at five different tempera-

tures.
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Interestingly, the evaluation of Eq. (4) at t ¼ 0
leads to the spatial spin–spin correlation, CsðrÞ;
computed as CsðrÞ ¼ ð

P
i Sið0ÞSiþrð0ÞÞ=N

� �
: It is

well known [19] that this correlation function
decays exponentially with distance,

CðrÞ / e�r=x; (5)
where x is the so called correlation length, which
measures the range of the magnetic order. Fig. 3
shows the results for the isotropic case. It can be
seen that each spin–spin correlation curve in Fig. 3
follows approximately an exponential decay, like
Eq. (5), with a particular value of x: Thus, in
general, the correlation length x depends on the
temperature, decreasing when the temperature
increases. For the isotropic case with N ! 1 the
result can be obtained analytically [9], given by
x ¼ �ðlnðcothð1=TÞ � TÞÞ

�1:

3.1. Static spin–spin correlations

Fig. 4 shows the spatial dependence of the
spin–spin correlation with applied magnetic field
for the x (parallel to the magnetic field) and yz

(perpendicular to the magnetic field) components
of S: In the former case, the applied magnetic field
increases the ordering range due to its global
behavior, correlating spins between distant sites.
However, the decay of the spin–spin correlation
function is slower than an exponential and there-
fore expression (5) with the definition of x is no
longer valid. In contrast, the correlations in the yz
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three values of the applied magnetic field h.
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plane are not affected by the presence of the
magnetic field, presenting a behavior which looks
similar to the one seen in the isotropic case.
Fig. 5 shows the results obtained for the

anisotropic case with D ¼ 0:1; 0:2 and 0:3; at three
different temperatures. Although anisotropy
drives the spins to be aligned in the xy plane, we
can see that the higher the anisotropy, the lower
the spin–spin correlation length for the xy

components. In the case of the z component, the
decay is faster than the former case, presenting a
change of sign, which means that the Sz compo-
nent after � 5 sites points in the opposite
direction. Spin–spin correlation decreases in both
xy and z components that indicates a loss of the
magnetic order in the chain, due to the local
behavior of the single-ion type anisotropy. Thus,
the emerging picture is that the anisotropy induces
disorder in the chain. The temperature enhances
this behavior.

3.2. Dynamic spin–spin correlations

The space–time spin–spin correlation function
for the isotropic case is shown in Fig. 6. The
correlation function decays with distance just like
the static one, and also decays in time in an
oscillating way. From the position of the first
maximum for each site (r=0, r=1 and so on) we
can conclude that the spin value of any given site
propagates to its neighbors with constant speed,
decreasing when the temperature increases. This is
a dynamic expression of the fact that temperature
induces disorder in the chain.
The results for space–time spin–spin correlation

function for anisotropy Da0 and applied
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magnetic field ha0 are displayed in Fig. 7(a) for
temperature T ¼ 0:1; in Fig. 7(b) for T ¼ 0:3 and
in Fig. 7(c) for T ¼ 0:5:
At low temperatures (Fig. 7(a)) the effects of the

external magnetic field and anisotropy can be seen
clearly. We can observe that the external magnetic
field has almost no influence on the spin diffusion
speed, but as a global effect it contributes to
correlate the system, increasing the correlation in
space and in time. Increasing the magnetic field
causes the system to reach a site-independent state
of correlation faster, in which the curves for
different values of r converge, and only decay in
time. In contrast, the anisotropy D makes the
spins become spatially decorrelated, decreasing
the time-dependent spin–spin correlation function.
If we increase the anisotropy, the differences
between the spins at different sites at long times
increase, reaching a highly site-dependent, but
time-independent state of correlation. Thus the
anisotropy, unlike the magnetic field, behaves
dynamically as a local field, inducing disorder in
the chain.
At intermediate and high temperatures

(Fig. 7(b) and (c)) the effects of both the external
magnetic field and the anisotropy are qualitatively
the same. However, they weakly affect the time-
dependent spin–spin correlation, which is domi-
nated by the effects of the temperature, already
seen in Fig. 6. This picture is consistent with the
fact that, when temperature increases, the interac-
tion among neighboring spins or with an external
field becomes less important.
4. Concluding remarks

Static and dynamic properties for the classical
Heisenberg chain have been obtained by means of
the Monte Carlo method combined with spin
dynamic techniques, in good agreement with the
available analytical results for specific cases. In
particular, for the isotropic case we found that
higher the temperature lower the order in the
chain. This becomes manifested in the static
properties as a decrease of the correlation length,
and in the dynamic properties as a decrease of the
spin diffusion speed.
According to our findings, the external

magnetic field and the easy-plane anisotropy
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Fig. 7. Spin–spin correlation function for three different values of h and D, at temperatures: (a) T ¼ 0:1; (b) T ¼ 0:3 , and (c) T ¼ 0:5:
In each plot, the five curves represent, from top to bottom, the correlation between sites r = 0, 1, 2, 3 and 4, respectively.
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affect in opposite ways the spin–spin correlation of
the chain. While the magnetic field contributes to
the order of the chain, increasing the correlation
length and the spin diffusion speed, the anisotropy
behaves dynamically as a local field, inducing
spatial disorder which can be observed in
the decrease of the time-dependent spin–spin
correlation. In summary, we found that the
increase of temperature and/or anisotropy induces
disorder, whereas the presence of an external
magnetic field induces order in the chain.
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