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ABSTRACT

By combining density functional molecular dynamics simulations with a thermodynamic integration technique, we
determine the free energy of metallic hydrogen and silica, SiO2, at megabar pressures and thousands of degrees
Kelvin. Our ab initio solubility calculations show that silica dissolves into fluid hydrogen above 5000 K for pressures
from 10 and 40 Mbars, which has implications for the evolution of rocky cores in giant gas planets like Jupiter,
Saturn, and a substantial fraction of known extrasolar planets. Our findings underline the necessity of considering
the erosion and redistribution of core materials in giant planet evolution models, but they also demonstrate that hot
metallic hydrogen is a good solvent at megabar pressures, which has implications for high-pressure experiments.
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1. INTRODUCTION

Hydrogen is the simplest and most abundant atom in the uni-
verse, but its properties at high pressures remain poorly charac-
terized (McMahon et al. 2012). In the interior of giant planets,
hydrogen is predicted to occur in metallic form. While such
a state has been generated at high temperatures with dynamic
shock wave experiments (Weir et al. 1996), obtaining metallic
hydrogen in static high-pressure experiments at room temper-
ature has been an elusive goal. While the earliest theoretical
estimates by Wigner & Huntington (1935) placed an insulator-
to-metal transition at only 25 GPa, recent advances in diamond
anvil cell experiments (Eremets & Troyan 2011; Howie et al.
2012; Zha et al. 2012) did not reveal conclusive evidence of met-
allization for pressures up to approximately 400 GPa. Conse-
quently, the properties of metallic hydrogen have primarily been
studied theoretically (Johnson & Ashcroft 2000) and with ab ini-
tio computer simulations (Militzer & Graham 2006; Vorberger
et al. 2007; Hamel et al. 2011; McMahon et al. 2012; Morales
et al. 2013a, 2013b; Soubiran et al. 2013; Goncharov et al. 2013;
Becker et al. 2013) that we also use for this article, in which we
focus on the interaction of metallic hydrogen and silica, SiO2.
Silica is not only important for geophysics but also as a proto-
type material for studying condensed matter physics at extreme
conditions. Hicks et al. (2006) used shock wave experiments to
study the thermodynamic properties of liquid silica at megabar
pressures.

In this article we focus on the question of whether silica dis-
solves into metallic hydrogen at megabar pressures, because this
would have implications for the stability of the cores of solar
and extrasolar gas giant planets. Many of the confirmed 800
extrasolar planets are gas giants that are primarily composed
of dense fluid hydrogen and helium. Furthermore, the Kepler
mission has detected 2740 planet candidates and has measured
their radii and orbital periods within 22 months of observations
(Batalha et al. 2013). In a few cases with multiple planets in close
orbits, masses have been inferred from transit-timing variations

(Charbonneau et al. 2009). The Juno mission is scheduled to
arrive at Jupiter in 2016 and will measure the gravitational
field of our largest local gas giant with unprecedented accu-
racy, revealing clues about its inner mass distribution. Existing
core-accretion models for gas giant formation (Mizuno et al.
1978) hold that these planets form from the rapid accretion of
gas around a rock–ice protocore. Therefore, according to our
understanding, the evolution of giant planets starts with a dif-
ferentiated rocky core surrounded by an envelope of hot, dense
hydrogen–helium gas. The temperature in the envelope rises,
and the gravitational energy from accretion is converted to heat.
An adiabatic temperature is rapidly established. The evolution
of a giant planet is controlled by the energy loss due to ther-
mal radiation (Fortney & Nettelmann 2009). Conventional giant
planet models assume a stable core and a sharp core–mantle
boundary instead of taking into account the possibility that the
metallic hydrogen layer may act as solvent for the initial pro-
tocore. Answering the question of whether giant planet cores
remain stable on a billion year time scale may also provide an
alternative explanation for the observed heavy element enrich-
ment in giant planet atmospheres, which is currently attributed
to late-arriving planetesimals (Niemann et al. 1996; Mahaffy
et al. 1998). If a core dissolved, it would lead to double diffu-
sive convection (Guillot et al. 2004; Stevenson 1982; Leconte &
Chabrier 2012, 2013) because gravity opposes the redistribution
of heavy core materials. This would introduce compositional
stratification and significantly reduce the rate at which heat can
be transported out of the interior, with substantial implications
for the thermal evolution and radius contraction of giant planets
(Chabrier & Baraffe 2007).

The initial cores of giant planets can be assumed to consist of a
combination of rocky and icy materials. The rocky components
are likely to be dominated by iron and magnesium silicate miner-
als. It was shown by Umemoto et al. (2006) that post-perovskite
MgSiO3 separates into MgO and SiO2 beyond ∼10 Mbars
and ∼10,000 K, which are conditions that are expected to be
exceeded at the core–mantle boundaries of typical gas giant
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planets. Recent ab initio calculations predicted a substantial sol-
ubility of MgO, water ice, and iron in fluid metallic hydrogen
for the core–mantle boundary of Jupiter and Saturn (Wilson &
Militzer 2012b, 2012a; Wahl et al. 2013). Therefore, this study
is focused on the solubility of remaining core material, SiO2,
in order to obtain a more complete picture of the behavior of
metallic hydrogen as a solvent of planetary materials.

At the core boundary of giant planets, the temperature
and pressure conditions are estimated to be on the order of
10–40 Mbar and 10,000 to 20,000 K. Because such extreme
conditions cannot yet be probed with laboratory experiments,
we use ab initio computer simulations that can be used directly
to characterized material at such P–T conditions (Militzer &
Wilson 2010; Wilson & Militzer 2010; Militzer 2013; Zhang
et al. 2013).

2. COMPUTATIONAL METHODS

Using density functional molecular dynamics (DFT-MD), we
calculated the Gibbs free energy of solvation, ΔGsol, of SiO2,
given by the difference between the Gibbs free energy of the
dissolved system and that of the separate compounds (SiO2 and
hydrogen) at fixed pressure–temperature conditions. We begin
by computing the free energy of solvation of SiO2 for a mixing
ratio of one solute atom per 128 hydrogen atoms (i.e., one SiO2
formula unit to 384 H) and later generalize our results to other
concentrations.

ΔGsol(SiO2 : 384H) = G(H384SiO2)

− [G(H384) + G(SiO2)]. (1)

Given the large quantity of hydrogen gas in giant planets, we
are primarily concerned with the low-concentration limit. Thus,
we can assume that solute atoms do not interact with each other,
and we introduce the following approximation:

G(H384SiO2) ≈ G(H128Si)+2G(H128O)−kBT log(27/2). (2)

The last term arises from the free energy of mixing because we
do not have the same number of hydrogen atoms in each term.

Since the entropy term in the Gibbs free energies, G =
E + PV − T S, is not directly accessible in standard molecular
dynamics simulations, we used a thermodynamic integration
(TDI) technique (Morales et al. 2009; Wilson & Militzer 2010,
2012a, 2012b; Militzer 2013; Sugino & Car 1995) to compute
the free energy difference between the system of interest and
a simpler noninteracting system whose free energy may be
computed explicitly. The difference in Helmholtz free energy
between systems governed by two different potentials is given by

ΔF =
∫ 1

0
〈U2 − U1〉λ dλ, (3)

where the angle brackets denote an average taken over trajec-
tories generated in the system governed by the hybrid potential
energy function Uλ. This method provides a general scheme
to calculate the Helmholtz free energy difference between two
systems governed by potentials U1(ri) and U2(ri), connected by
the hybrid potential Uλ = (1 − λ)U1 + λU2. Since we have split
the Gibbs free energy of solvation in energies of four different
systems (pure silica, pure fluid hydrogen, fluid hydrogen with
one O atom, and fluid hydrogen with one Si atom), we need
to perform four separate sets of simulations at each pressure
and temperature. Five equally spaced λ values between 0 and 1

Table 1
Gibbs Free Energies of Pure Hydrogen, Hydrogen with Oxygen, Hydrogen

with Silicon, and SiO2 (Solid in All Cases Except for 20 Mbar and 20,000 K)

P, T G(H128) G(H128O) G(H128Si) G (SiO2)
(Mbar, 1000 K) (eV) (eV) (eV) (eV)

10, 3 671.4(2) 688.6(2) 705.4(3) 63.3(1)
10, 5 559.0(5) 573.5(4) 590.5(5) 60.2(1)
20, 3 1270.7(2) 1304.7(2) 1330.1(3) 121.0(1)
20, 5 1170.8(4) 1202.4(5) 1228.2(3) 118.4(1)
20, 10 843.2(4) 868.3(4) 893.8(2) 109.1(4)
20, 20 17.3(5) 26.9(6) 53.6(7) 81.8(1)
40, 3 2131.4(2) 2191.8(2) 2229.4(1) 211.3(1)
40, 7 1936.2(3) 1991.4(3) 2030.7(3) 206.0(2)
40, 10 1747.4(1) 1799.0(6) 1837.6(9) 200.6(3)
40, 15 1384.3(8) 1427.9(4) 1467.6(8) 190.1(4)

are taken for each of them to get a smooth curve of (U2 − U1)
versus λ that can be interpolated via quadratic interpolation to
determine the integral. Once we have obtained ΔF = F2 − F1,
we add the known free energy F1 to determine the energy of
the system, F2, governed by the potential U2. The Gibbs free
energy is obtained by the addition of the PV term.

The TDI is performed in two steps: first from a system
governed by DFT forces to a system interacting via a classical
pair potential and then from the classical system to a reference
system with a free energy that is known analytically. For fluids,
we chose an ideal gas, while for solid systems we selected a
system of independent harmonic oscillators as the reference
system. For the fluid systems, we constructed the classical two-
body potentials by fitting to the forces of a DFT-MD trajectory
using the force-matching methodology (Izvekov et al. 2004;
Tangney & Scandolo 2002). In the case of a solid SiO2 system,
we first determined the harmonic spring constants from mean
squared displacement from an atom’s lattice site and then fit the
residual forces with pair potentials.

The DFT calculations throughout this work were performed
using the VASP code (Kresse & Furthmüller 1996). We used
pseudopotentials of the projector-augmented wave type (Blochl
1994), the exchange-correlation functional of Perdew, Burke,
and Ernzerhof (Perdew et al. 1996), a cutoff energy of 900 eV for
the plane wave expansion of the wavefunctions, and a 2 × 2 × 2
k-point grid to sample the Brillouin zone, except for the SiO2
simulations where we used only the Γ point. An MD time step
of 0.2 fs was used, and the simulation time ranged between
0.5 and 2.0 ps. The ΔGsol values were confirmed to be well
converged with respect to these parameters for the purpose of
this dissolution calculation.

For pure solid SiO2, we used the Fe2P-type structure with
the space group P-62m that was recently predicted by Tsuchiya
& Tsuchiya (2011) to be the ground-state structure at pressures
above 7 Mbar. We analyzed the stability of each material phase at
pressures ranging from 10 to 40 Mbar and temperatures ranging
from 3000 to 20,000 K and confirmed that the structure remained
solid for all cases under consideration except for 20,000 K and
20 Mbar, where we found liquid SiO2 to be the stable phase.

Gibbs energies were computed for the following system sizes:
H128, H128Si, H128O, solid SiO2 in a 72 atom supercell, and
liquid SiO2 in a cubic cell with 96 atoms. The resulting Gibbs
free energies are shown in Table 1 and plotted as a function
of temperature in Figure 1. The error bars on the G values
are dominated by two terms, the more significant one being
the uncertainty in the volume at the desired pressure due to
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Figure 1. Computed solvation curve ΔG for different pressures, where a negative
Gibbs free energy represents a preference for the dissolved state. Open squares,
circles, and diamonds represent states where SiO2 is solid, while the filled red
circle corresponds to a state where SiO2 was found to be liquid.

(A color version of this figure is available in the online journal.)

Table 2
Gibbs Free Energies of Solubility for SiO2 into Hydrogen at a

Concentration of One Part in 384 Hydrogen Atoms

P T ΔGsol

(Mbar) (K) (eV)

10 3000 4.92 ± 0.69
10 5000 0.32 ± 1.90
20 3000 6.35 ± 0.78
20 5000 2.18 ± 1.63
20 10000 −8.37 ± 1.45
20 20000 −26.47 ± 2.14
40 3000 7.40 ± 0.63
40 7000 −0.93 ± 1.19
40 10000 −7.13 ± 1.60
40 15000 −19.59 ± 2.55

finite simulation time and the other being the uncertainty in the
〈UDFT − Uclassical〉 terms in the TDI.

3. RESULTS AND DISCUSSION

The results in Table 1 are used in conjunction with the
Equations (1) and (2) to obtain the Gibbs free energies of
solvation in Table 2. A negative Gibbs free energy implies
that the dissolved state has a lower Gibbs free energy than the
separate phases, demonstrating that solvation is preferred at a
concentration of 1:384. A positive free energy indicates that the
fluid system is supersaturated and that deposition of fluid SiO2,
or formation of solid grains, will be thermodynamically favored.
Our results in Figure 2 are not too different from those found
for MgO (Wilson & Militzer 2012a), showing that SiO2 is also
soluble at temperatures that are a bit lower for a given pressure,
certainly well below those at Jupiter’s core–mantle boundary.
This solubility occurs at higher temperatures than water ice
(Wilson & Militzer 2012b), where the solubility was already
strongly favored at much lower temperatures of 2000–3000 K
in the same pressure range.

Gibbs free energy of solvation can be generalized to other
concentrations without performing additional DFT-MD simu-
lations if the average separation between solute atoms is large
enough so that their interaction can be neglected. Under this
assumption, the free energy of mixing yields the difference of
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Figure 2. Saturation solubility of SiO2 in metallic hydrogen (this work; solid
lines) and MgO (from Wilson & Militzer 2012a; dashed lines) as a function of
temperature and pressure. The temperature–pressure conditions of the Jovian
and Saturnian core–mantle boundaries are shown for comparison.

(A color version of this figure is available in the online journal.)

ΔGsol between a solution of one SiO2 formula unit in m versus
n hydrogen atoms (Wilson & Militzer 2012b),

ΔGsol[m] − ΔGsol[n]

kBT
= m ln

(
mVH + VSi + 2VO

mVH

)

− n ln

(
nVH + VSi + 2VO

nVH

)

+ 3 ln

(
mVH + VSi + 2VO

nVH + VSi + 2VO

)
,

where VH, VO, and VSi are the effective volumes of the H,
O, and Si atoms that we obtained by comparing the volumes
of the different fluid simulations at the same pressure and
temperature. Using a linear interpolation for the data in Table 2,
we can determine the saturation concentration for SiO2 in fluid
hydrogen as a function of temperature and pressure throughout
the 10–40 Mbar and 3000–20,000 K range. A contour plot
of constant saturation solubility is shown in Figure 2. Solute
concentrations higher than 1:100 are not shown because they
may lead to interactions between solute atoms. Despite error
bars of approximately 1000 K that should be considered to
be uncertainties of the contours, these results show that SiO2
is highly soluble at both Jupiter’s and Saturn’s core–mantle
boundary conditions. This is in contrast to MgO, which may be
not be as highly soluble at Saturnian core conditions. Therefore,
there exists the possibility that SiO2 may dissolve from Saturn’s
core but leave solid MgO behind.

The Gibbs free energy of solubility ΔG may be split into
three components: an internal energy component ΔU , a volume
contribution P ΔV , and an entropic term −T ΔS, which lead
to ΔG = ΔU − T ΔS + P ΔV . The P ΔV and ΔU values can
be directly extracted from standard DFT-MD simulations. The
remaining term is −T ΔS from calculated ΔF . All terms are
shown in Figure 3 as a function of temperature at 20 Mbar.
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Figure 3. Splitting of ΔG at 20 Mbar into its three constituent components:
the internal energy term ΔU that represents differences in chemical binding,
the P ΔV term that arises from volume differences, and the remaining −T ΔS

term that represents entropic effects. The arrow denotes the temperature above
which dissolutions are favored at the concentration of one SiO2 in 384 hydrogen
atoms.

(A color version of this figure is available in the online journal.)

The P ΔV term was comparatively close to zero but shows a
slight preference of approximately 0.5–3.5 eV for materials to
remain separate, suggesting the dissolution reaction is not a
pressure-driven process. The ΔU term also shows an energy
barrier against dissolution that is slightly larger than the P ΔV
term. For all temperatures under consideration, the entropic term
−T ΔS is negative, confirming that more disorder is present in
the dissolved state. The −T ΔS term exhibits a steep negative
slope as a function of temperature that introduces a sign change
into the Gibbs energy balance at T = 6000 K for 20 Mbar where
SiO2 is solid. Above this temperature, dissolution is favored,
which can be considered to be an entropy-driven process similar
to H2O and MgO (Wilson & Militzer 2012b, 2012a). For iron,
the −T ΔS term also favors dissolution, but there is no energy
barrier to overcome because at megabar pressures, hydrogen
and iron are both metals that mix at low temperatures (Wahl
et al. 2013).

Figure 3 shows that the Gibbs free energy of solubility
depends linearly on temperature. This trend continues into
the liquid phase, as our 20,000 K data point confirms. For
the temperature interval from 10,000 to 20,000 K, where one
expects SiO2 to melt at 20 Mbar (González-Cataldo et al. 2014),
this trend implies that the Gibbs free energy difference between
the solid and liquid phases is small compared with the Gibbs
free energy change induced by dissolution. If SiO2 melts in
the vicinity of the dissolution transition, one would expect
this transition to introduce only a modest change in slope into
saturation solubility curves in Figure 2 because the Gibbs free
energy changes continuously across the melting transition.

4. CONCLUSIONS

The presented ab initio free energy calculations demonstrate
that metallic hydrogen is a good solvent for silica at megabar
pressures for temperatures above 5000 K. This result is consis-
tent with recent ab initio solubility calculations that predicted
H2O to dissolve into metallic hydrogen at 2000–3000 K (Wilson
& Militzer 2012b) and MgO at 6000–8000 K (Wilson & Militzer
2012a). This suggests other insulating materials may dissolve
at a comparable temperature range. Iron was found to dissolve

at low temperatures because it is a metal (Wahl et al. 2013).
These findings suggest that hydrogen will spontaneously react
with any material that is used as confinement during dynamic
shock wave experiments that reach megabar pressures and high
temperatures. Our findings indirectly place a limit on the time
scale of such experiments before a significant contamination of
the sample sets in.

Our results also have implications for the evolution of giant
planets. We predict that the SiO2 component has been eroded
from the cores of Jupiter and Saturn, while MgO in Saturn’s core
may remain stable. Therefore, a partial solvation of the Saturnian
core could have taken place, taking away more volatile materials
like SiO2 and water ice and leaving behind less soluble materials
like MgO. Because of the differences between the solubility
curves of MgO and SiO2 in Figure 2, partial core erosion may
also occur in extrasolar gas giant planets that are smaller than
Saturn but still large enough to contain metallic hydrogen. In
general, larger and hotter interiors are expected to promote
core erosion and a greater degree of redistribution of heavy
material (Guillot et al. 2004). Provided the necessary energy
for convection, the material may be redistributed throughout the
entire planet, leading to an enrichment in heavy elements in
giant planet atmospheres that have previously been attributed to
late-arriving planetesimals.

Alternatively, the rate of redistribution may be hampered by
compositional stratification that is the result of double diffusion
convection (Guillot et al. 2004; Stevenson 1982; Leconte &
Chabrier 2012). The stratification would also limit the heat
transport from the core, delay a planet’s cooling, and possibly
explain the inflated radii that have been observed for a large of
number giant exoplanets (Chabrier & Baraffe 2007).

We have assumed that there is sufficient hydrogen available
for the approximation of noninteracting solute atoms to remain
valid. Also, other stoichiometries of SiO2 have not been con-
sidered, assuming Si and O to dissolve in a one-to-two ratio
according to the charge balance.

Our results confirm that the core erosion must be taken
into account when future models of giant planet interiors are
constructed. The redistribution of heavy elements has important
implications in the heat transport and mass distribution, and
core erosion plays a fundamental role in this aspect since it may
be the source of the presence of these elements in the outer
layers. Further models for the upconvection of core material are
also necessary to understand the present structure of Jupiter and
other planets, whose effects may be reflected on the gravitational
moments to be measured by the Juno mission.
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