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a b s t r a c t

We present a methodology for fitting interatomic potentials to ab initio data, using the particle swarm
optimization (PSO) algorithm, needing only a set of positions and energies as input. The prediction error
of energies associated with the fitted parameters can be close to 1 meV/atom or lower, for reference
energies having a standard deviation of about 0.5 eV/atom.We tested ourmethod by fitting a Sutton–Chen
potential for copper from ab initio data, which is able to recover structural and dynamical properties, and
obtain a better agreement of the predicted melting point versus the experimental value, as compared to
the prediction of the standard Sutton–Chen parameters.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In Condensed Matter Physics, the task of obtaining different
mechanical properties of materials, simulated atomistically with
a large number of atoms under ab initio methods, is an almost
prohibitive one, in terms of computational effort with the cur-
rent computer architectures. It might even at times be impossi-
ble. Because of this, producing a ‘‘classical’’ interatomic potential
as a substitute for the genuine quantum-mechanical interaction of
the particles is highly desirable. The usual procedure is to fit some
empirical interatomic potential function, depending on N param-
eters, requiring either agreement with certain macroscopic prop-
erties (structural, thermodynamical, etc.) or simply agreement
between the predicted and observed energies and atomic forces. A
standard algorithm based on force information is the force match-
ing method [1,2].

In this work we present a methodology for fitting interatomic
potentials to ab initio data, using the particle swarm optimization
(PSO) algorithm [3]. The objective function to be minimized is the
total prediction error in the energies for the configurations pro-
vided, thus the algorithm does not require any information besides
the atomic positions for each configuration and their correspond-
ing ab initio energies. In particular it does not require the atomic
forces, as in other fitting procedures such as force matching meth-
ods.

∗ Corresponding author. Tel.: +56 229787280.
E-mail addresses: dgonzalez@gnm.cl (D. González), sdavis@gnm.cl (S. Davis).

http://dx.doi.org/10.1016/j.cpc.2014.07.019
0010-4655/© 2014 Elsevier B.V. All rights reserved.
2. Interatomic potential models

We implemented two families of interatomic potentials, pair
potentials and embedded atom potentials. Among the former,
we tested the well-known Lennard-Jones potential [4], given
by
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and the 6-parameters ‘‘generic’’ potential as implemented in
Moldy [5],
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From the family of embedded atom potentials [6], having the
general form
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we implemented the Sutton–Chen potential, where the pair func-
tions and the embedding function are given by

F(ρ) = ϵC
√
ρ (4)

φ(r) = ϵ(a/r)n (5)

ψ(r) = (a/r)m. (6)
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3. Particle swarm optimization

The particle swarm optimization (PSO) algorithm is based on
the idea of distributing the searchprocedure among a large number
of ‘‘agents’’, which act independently of each other. Each agent
moves through the search space with a simple dynamics, reacting
to fictitious forces drawing it towards its own current best solution
and the global best solution for the whole swarm. In this way,
when an agent finds a better solution than the current global best,
it becomes the new global best and all the other agents react
instantly, the swarm is directed towards the new solution.

For a set of n particles represented by their positions
x1, x2, . . . , xn, the velocity for the ith particle and the kth step is

vki = ωvk−1
i + c1rk1(xB − xk−1

i )+ c2rk2(xG − xk−1
i ) (7)

and the position is given by

xki = xk−1
i + vki . (8)

We employed the following choice of PSO parameters:ω = 0.7,
c1 = 1.4 and c2 = 1.4, after a few trial convergence runs.

4. Implementation of the fitting algorithm

For a potential function where we wish to find the parameters
a0, a1, . . . , am from a set of positions rji and energies Ej satisfying
the relation

V (rj1, r
j
2, . . . , r

j
n; a) = Ej (9)

with

a = (a0, a1, . . . , am),

we can define an objective function which is just the total
prediction squared error, of the form
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and then for the set of parameters a∗ that correctly fit the potential
V we have f (a∗) = 0.

Then the problem may be solved numerically with the PSO
algorithm minimizing the function f (a).

4.1. Optimization of the algorithm

We have included some improvements on the PSO implemen-
tation, particular to our problem. For instance, we perturbed the
swarm every time the procedure gets stuck in a minimum for NS
steps (NS proportional to the number of parameters d in the poten-
tial, usually NS = 50d), completely randomizing their positions.

On the other hand,we exploit the fact that for several families of
potentials there is a scale parameter for the interatomic distance,
let us call it σ , such that the potential depends on r only through
r/σ . This is the case for the σ parameter in the Lennard-Jones po-
tentials, for the C , D, E, F and 1/B parameters in the generic poten-
tial from Moldy, and also for the a parameter in the Sutton–Chen
variant of the embedded atom potentials. This distance scale pa-
rameter can be constrained to be between the minimum observed
distance and a multiple of this value (typically 10 times), which
considerably reduces the search space.

Parallelization was achieved simply by distributing the PSO
particles evenly among the different processors using the message
passing interface (MPI) framework, at each step sharing the global
best between all processors.
5. Results

5.1. Lennard-Jones potential

In order to test the consistency of our procedure, we randomly
generate [7] a set of 20 configurations andwe compute their energy
according to the standard Lennard-Jones parameters for argon,
ϵ = 0.0103048 eV and σ = 3.41 Å.

The resulting set has a standard deviation of energy of 0.41063
eV. Then, with the information of positions and energies (in a
parallel run using an AMDOpteron 6272, 2.1 GHz, shared-memory
machine with 64 cores and 500 PSO particles), the time needed to
find theminimumprediction errorwas 212.6 s.We can see that the
algorithm converge quickly for each parameter, recovering their
exact values at 1300 steps (the prediction error reached is below
10−27 meV/atom, see Figs. 1 and 2).

5.2. 6-parameter generic potential

For the 6-parameters pair potential using the same set of
positions and energies obtained for the previous Lennard-Jones
test, the time needed to find the minimum prediction error was
3159.9 s, using the same 64-core machine and 500 PSO particles.
In this case the error for the converged set of parameters falls below
8 × 10−2 meV/atom at 9000 steps.

5.3. Embedded atom potential

We repeated the same approach for the embedded atom
potential, this time using the standard Sutton–Chen parameters
for copper, ϵ = 0.0123820 eV, a = 3.61 Å, n = 9, m = 6 and
C = 39.432. We used 4 configurations as input, and we stopped
the minimization procedure after 193015 steps (execution time
was 23 h using the same 64-core machine as the section before,
and using 800 PSO particles), when we reached a prediction error
of about 0.8 meV/atom and the following fitted parameters: ϵ =

0.0145749 eV, a = 3.5834 Å, n = 8.82683,m = 5.67465, and
C = 37.028 (see Figs. 3 and 4).

As in this case the fitting error in energies is not negligible,
we assessed the ability of the potential for reproducing atomic
forces on each individual atom. We found an average error of
4.64%, where the averagewas taken over the individual relative (in
percentage) errors for each atom. However, if wemanually correct
the magnitude of each force to match the correct one, the average
error falls to 1.36%. This means about 3% of the total error in the
forces is just a propagation of the error in reproducing the correct
energy scale (the parameter ϵ in this case).

6. Application: an embedded atompotential for copper from ab
initio data

In order to test our procedure on a more realist scenario and
assess the quality of the fitted potentials we performed ab ini-
tio microcanonical molecular dynamics simulations of copper at
different temperatures (covering its solid, liquid and superheated
phases) but at the same room pressure (lattice constant a =

3.61 Å). All molecular dynamics calculations were performed us-
ing Density Functional Theory (DFT) as implemented in VASP [8].
We used Perdew–Burke–Ernzerhof (PBE) generalized gradient ap-
proximation (GGA) pseudopotentials [9] with an energy cutoff of
204.9 eV and k-point expansion around the Γ point only.

From these simulations, we generated 13229 different atomic
configurations with their respective energies, mixed from solid
(T = 738 K), liquid (T = 2716 K) and superheated state (T =

2058 K) simulations. Among them we chose a subset of 30
with maximum standard deviation of the energy (namely 0.24
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Fig. 1. (Color online) Evolution of the ϵ coordinate for the case of a Lennard-Jones
potential as a function of optimization step.

Fig. 2. (Color online) Evolution of the σ coordinate for the case of a Lennard-Jones
potential as a function of optimization step.

Fig. 3. Prediction error (meV) as a function of optimization steps for the case of a
6-parameter pair potential.

eV/atom), in order to increase the transferability of the fitted po-
tential. These configurations were used as input to the fitting
procedure. We found the Sutton–Chen potential parameters pre-
sented in Table 1, with a prediction error of 5.19 meV/atom (see
Figs. 1–4).

As we did with the EAM fit in the previous section, we assessed
the ability of the ab initio-fitted potential for reproducing atomic
forces on each individual atom. In this case we found an average
error of 22.19%, which falls to 12.53% when correcting for the
magnitude of each individual force. The remaining error, of about
10%, is then due to the error in the parameter ϵ. This increase in the
size of the error when attempting to reproduce individual forces
scales with the size of the error in energy (0.8 meV versus 5.19
meV).
Fig. 4. Prediction error (meV) as a function of optimization steps for the case of an
embedded-atom potential.
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Fig. 5. Radial distribution function g(r) for liquid copper at T = 2070 K computed
from ab initio data and from the embedded atom potential fitted with our method.

We tested these parameters by performing classical molecular
dynamics simulations using the LPMD [10] code, with a 4 × 4 × 4
FCC simulation cell (256 atoms, a = 3.61 Å). Fig. 5 shows the radial
distribution function g(r) produced by our fitted Cu potential for
liquid at T = 2070 K, together with the one computed from ab
initio data. It reproduces the positions and widths of minima, but
slightly underestimating the height of the firstmaximum. This g(r)
also agrees with the features found in a previous ab initio fitting
study [11].

Fig. 6 shows the mean square displacement for liquid at T =

2070 K. From this we obtained a diffusion coefficient D =

0.448 Å2
/ps, close to the value of D = 0.4923 Å2

/ps obtained di-
rectly from the ab initiodata. As a reference, the experimental value
reported by Meyer [12] is D = 0.52 ± 0.01 Å2

/ps at T = 1620 K.
The quality of the potential in reproducing thermal properties

was assessed by computing the melting point, using the micro-
canonical Z-method [13–15]. In this method, for constant volume
the T (E) curve is drawn by performing differentmolecular dynam-
ics simulations at different initial kinetic energies (in every simula-
tion the system starts with the ideal crystalline configuration). The
discontinuity in the isochore signals the melting point.

Fig. 7 shows the isochoric curve for different energies around
the melting point, where the lowest point of the rightmost branch
correspond to an upper estimate of the melting temperature Tm, in
our case approx. 1700 K (the experimental value is Tm = 1356.6K).
The highest point is the critical superheating temperature TLS ,
around T = 2020 K. For comparisonwe also included the isochoric
curve calculatedwith the potential parameters by Sutton andChen,
which gives Tm around2000K for the same systemsize andnumber
of simulation steps.
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Table 1
Sutton-Chen potential parameters for Cu, fitted from ab initio data.

Source a (Å) n m C ϵ (eV)

Sutton and Chen 3.61 9.0 6.0 39.432 0.012382
Belonoshko et al. 3.270 9.05 5.005 33.17 0.0225
This work 3.34385 5.93853 2.13419 32.2332 0.0846903
Ab initio
EAM fit
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Fig. 6. Mean square displacement (MSD) for liquid copper at T = 2070K computed
from ab initio data and from the embedded atom potential fitted with our method.

Fig. 7. (Color online) Isochoric curve (Z-curve) for copper according to our fitted
potential parameters. The Z-method predicts a melting temperature Tm = 1700 K.

7. Concluding remarks

We have shown that it is possible to use a parallel algorithm
based on particle swarm optimization to fit interatomic potentials
to ab initio energies only.
Our procedure has been tested by fitting both pair potentials
and embedded atom potentials, up to a prediction error of the
order of 1 meV/atom, using between 5 and 30 different configura-
tions. The implementation code is parallelized usingmessage pass-
ing interface (MPI) libraries.

We demonstrated the capabilities of our method by fitting a
set of Sutton-Chen parameters for copper using ab initio data from
three thermodynamic phases. This fitted potential is able to repro-
duce the radial distribution function and the diffusion coefficient
for liquid copper at T = 2070 K of the ab initio data, although it un-
derestimates the diffusion coefficientwith respect to experimental
data. It also yields a better prediction of the melting point than the
standard Sutton-Chen parameters.
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