All-Electron Full-Potential Calculations at $\mathcal{O}(\mathsf{ASA})$ Speed

Volker Eyert

Center for Electronic Correlations and Magnetism Institute for Physics, University of Augsburg

September 29, 2009

- Background
- 2 Full-Potential ASW Method
 - Theoretical Methodology
 - Proof of Concept: Results
- Materials Science: Delafossites

- Background
- Full-Potential ASW Method
 - Theoretical Methodology
 - Proof of Concept: Results
- Materials Science: Delafossites

- Background
- Full-Potential ASW Method
 - Theoretical Methodology
 - Proof of Concept: Results
- Materials Science: Delafossites

- Background
- Full-Potential ASW Method
 - Theoretical Methodology
 - Proof of Concept: Results
- Materials Science: Delafossites

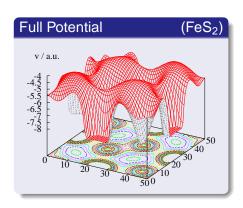
John C. Slater

Full Potential

 $v_{\sigma}(\mathbf{r}): \left\{ egin{array}{ll} ext{spherical symmetric near nuclei} \\ ext{flat outside the atomic cores} \end{array}
ight.$

John C. Slater

Full Potential


 $v_{\sigma}(\mathbf{r}): \left\{ egin{array}{ll} ext{spherical symmetric near nuclei} \\ ext{flat outside the atomic cores} \end{array}
ight.$

Muffin-Tin Approximation

$$v_{\sigma}^{MT}(\mathbf{r}) = \begin{cases} & ext{spherical symmetric in spheres} \\ & ext{constant in interstitial region} \end{cases}$$

Muffin-Tin Approximation

distinguish:

atomic regions

remainder

Muffin-Tin Approximation

distinguish:

- atomic regions
 - muffin-tin spheres
 - $V_{\text{eff},\sigma}(\mathbf{r}) = V_{\text{eff},\sigma}(|\mathbf{r}|)$
- remainder

Muffin-Tin Approximation

distinguish:

- atomic regions
 - muffin-tin spheres
 - $V_{\text{eff},\sigma}(\mathbf{r}) = V_{\text{eff},\sigma}(|\mathbf{r}|)$
- remainder
 - interstitial region
 - $v_{eff,\sigma}(\mathbf{r}) = 0$

Partial Waves

- muffin-tin spheres
 - $V_{\text{eff},\sigma}(\mathbf{r}) = V_{\text{eff},\sigma}(|\mathbf{r}|)$
- interstitial region
 - $v_{eff,\sigma}(\mathbf{r}) = 0$

Partial Waves

- muffin-tin spheres
 - $V_{\text{eff},\sigma}(\mathbf{r}) = V_{\text{eff},\sigma}(|\mathbf{r}|)$
 - solve radial Schrödinger equation numerically
- interstitial region
 - $v_{eff,\sigma}(\mathbf{r}) = 0$

Partial Waves

- muffin-tin spheres
 - $V_{\text{eff},\sigma}(\mathbf{r}) = V_{\text{eff},\sigma}(|\mathbf{r}|)$
 - solve radial Schrödinger equation numerically
- interstitial region
 - $v_{eff,\sigma}(\mathbf{r}) = 0$
 - "envelope functions"
 - plane waves
 - spherical waves

Partial Waves

- muffin-tin spheres
 - $V_{\text{eff},\sigma}(\mathbf{r}) = V_{\text{eff},\sigma}(|\mathbf{r}|)$
 - solve radial Schrödinger equation numerically
- interstitial region
 - $V_{eff,\sigma}(\mathbf{r}) = 0$
 - "envelope functions"
 - plane waves
 - spherical waves
- match at sphere surface ("augment")

Muffin-Tin Potential

Partial Waves

- muffin-tin spheres
 - $V_{\text{eff},\sigma}(\mathbf{r}) = V_{\text{eff},\sigma}(|\mathbf{r}|)$
 - solve radial Schrödinger equation numerically
- interstitial region
 - $V_{eff,\sigma}(\mathbf{r})=0$
 - "envelope functions"
 - plane waves
 - spherical waves
- match at sphere surface ("augment")

Basis Functions

- matched partial waves
 - augmented plane waves (APWs)
 - "muffin-tin orbitals" (MTOs), augmented spherical waves (ASWs)

Wave Function

expand in basis functions

 expansion coefficients from variational principle

Basis Functions

- matched partial waves
 - augmented plane waves (APWs)
 - "muffin-tin orbitals" (MTOs), augmented spherical waves (ASWs)

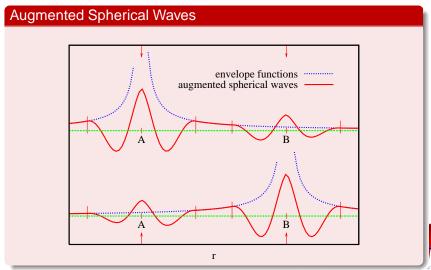
Wave Function

expand in basis functions

 expansion coefficients from variational principle

Core States

all-electron methods


- fully included
- orthogonal to partial waves

Basis Functions

- matched partial waves
 - augmented plane waves (APWs)
 - "muffin-tin orbitals" (MTOs), augmented spherical waves (ASWs)
- used to describe valence states

Ole K. Andersen

"Linear Methods in Band Theory"

- energy dependence of basis functions almost linear \rightarrow linearize $(\varphi, \dot{\varphi})$
 - huge increase in computat. efficiency!

Ole K. Andersen

"Linear Methods in Band Theory"

- energy dependence of basis functions almost linear \rightarrow linearize $(\varphi, \dot{\varphi})$
 - huge increase in computat. efficiency!

Linear Augmented Plane Wave (LAPW)

- muffin-tin approximation
- easy to implement

good!

bad

- full-potential at a low price
 - basis functions from muffin-tin potential
 - wave functions from full potential
 - example: Wien2k
- large basis set (≈ 100 pw's/atom)

Ole K. Andersen

Linear Muffin-Tin Orbital (LMTO)

- based on spherical waves
 - does not require crystalline periodicity
 - natural interpretation of results
- difficult to implement

bad!

- full-potential extension extremely difficult
- muffin-tin approximation (?)
 - finite interstitial region
 - large basis set: two functions per s-, p-, d-state
 - still inefficient

Ole K. Andersen

Linear Muffin-Tin Orbital (LMTO)

- based on spherical waves
 - does not require crystalline periodicity
 - natural interpretation of results
- difficult to implement

bad!

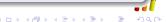
- full-potential extension extremely difficult
- muffin-tin approximation (?)
 - finite interstitial region
 - large basis set: two functions per s-, p-, d-state
 - still inefficient

bad!

Ole K. Andersen

Linear Muffin-Tin Orbital (LMTO)

- based on spherical waves
 - does not require crystalline periodicity
 - natural interpretation of results
- atomic-sphere approximation (ASA)
 - make spheres space-filling!
 - interstitial region formally removed
 - only numerical functions in spheres
 - minimal basis set (s, p, d)
 - very high computational efficiency
 - $\rightarrow \mathcal{O}(ASA)$ speed!!!
 - makes potential more realistic
 - systematic error in total energy



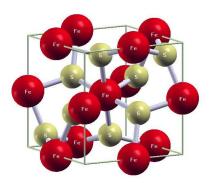
Ole K. Andersen

Linear Muffin-Tin Orbital (LMTO)

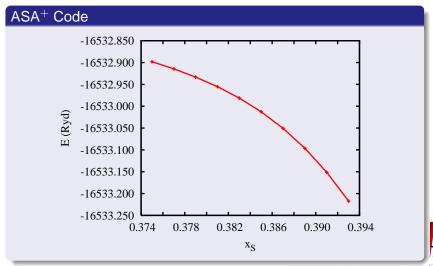
- based on spherical waves
 - does not require crystalline periodicity
 - natural interpretation of results
- atomic-sphere approximation (ASA)
 - make spheres space-filling!
 - interstitial region formally removed
 - only numerical functions in spheres
 - minimal basis set (s, p, d)
 - very high computational efficiency
 - $\rightarrow \mathcal{O}(\mathsf{ASA})$ speed!!!
 - makes potential more realistic
 - systematic error in total energy


Ole K. Andersen

Linear Muffin-Tin Orbital (LMTO)


- based on spherical waves
 - does not require crystalline periodicity
 - natural interpretation of results
- atomic-sphere approximation (ASA)
 - make spheres space-filling!
 - interstitial region formally removed
 - only numerical functions in spheres
 - minimal basis set (s, p, d)
 - very high computational efficiency
 - $\rightarrow \mathcal{O}(\mathsf{ASA})$ speed!!!
 - makes potential more realistic
 - systematic error in total energy

Iron Pyrite: FeS₂



Pyrite

- Pa3̄ (T_h⁶)
- a = 5.4160 Å
- "NaCl structure" sublattices occupied by
 - iron atoms
 - sulfur pairs
- sulfur pairs || (111) axes
- $x_S = 0.38484$
- rotated FeS₆ octahedra

FeS₂: Structure Optimization

Conclusions

- ASA (space-filling atomic spheres)
 - O(ASA) speed
 - systematic error in total energy
- non-overlapping muffin-tin spheres
 - prerequisite for accurate total energies
 - $\bullet \ \ \text{larger basis set} \rightarrow \text{inefficient}$

Conclusions

- ASA (space-filling atomic spheres)
 - O(ASA) speed
 - systematic error in total energy
- non-overlapping muffin-tin spheres
 - prerequisite for accurate total energies
 - larger basis set → inefficient

Requirements

- restore interstitial region
 - go to non-overlapping muffin-tin spheres
 - go beyond constant-potential approximation
- inside muffin-tin spheres
 - non-spherical contributions

Conclusions

- ASA (space-filling atomic spheres)
 - O(ASA) speed
 - systematic error in total energy
- non-overlapping muffin-tin spheres
 - prerequisite for accurate total energies
 - larger basis set → inefficient

Requirements

- restore interstitial region
 - go to non-overlapping muffin-tin spheres
 - go beyond constant-potential approximation
- inside muffin-tin spheres
 - non-spherical contributions

Guidelines

- interstitial quantities expanded in plane waves
 - straightforward to implement
 - inefficient
- interstitial quantities expanded in spherical waves
 - elegant, no periodicity required
 - efficient
 - difficult to implement

Guidelines

- interstitial quantities expanded in plane waves
 - straightforward to implement
 - inefficient
- interstitial quantities expanded in spherical waves
 - elegant, no periodicity required
 - efficient
 - difficult to implement

ASW Method

Characteristics

- "dialect" of LMTO
 - different linearization scheme
 - different interstitial energy
 - different implementations

ASW Method

Characteristics

- "dialect" of LMTO
 - different linearization scheme
 - different interstitial energy
 - different implementations

0th Generation (Williams, Kübler, Gelatt, 1970s)

PRB **19**, 6094 (1979)

ASW Method

Characteristics

- "dialect" of LMTO
 - different linearization scheme
 - different interstitial energy
 - different implementations

1st Generation (VE, 1990s)

IJQC 77, 1007 (2000)

- completely new, monolithic implementation
- new algorithms improved accuracy, numerical stability
- much improved functionality, usability, and portability
- xAnderson convergence acceleration scheme
- all LDA-parametrizations, most GGA-schemes
- still based on atomic-sphere approximation

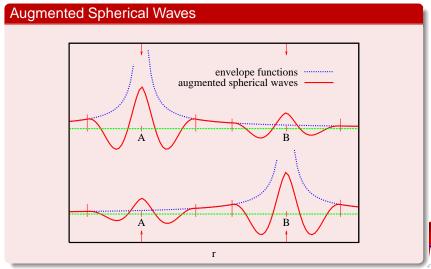
Wave Function Expanded in Basis Functions

$$\psi_{\sigma}(\mathbf{r}) = \sum_{L\kappa i} c_{L\kappa i\sigma} H^{\infty}_{L\kappa\sigma}(\mathbf{r}_i)$$

 $\longrightarrow c_{L\kappa i\sigma}$ determined variationally

Wave Function Expanded in Basis Functions

$$\psi_{\sigma}(\mathbf{r}) = \sum_{L\kappa i} c_{L\kappa i\sigma} H^{\infty}_{L\kappa\sigma}(\mathbf{r}_i)$$


 $\longrightarrow c_{L\kappa i\sigma}$ determined variationally

Augmented Spherical Wave

$$H^{\infty}_{L\kappa\sigma}(\mathbf{r}_i) = \begin{cases} H^{I}_{L\kappa}(\mathbf{r}_i) & \text{interstitial region} \\ \tilde{H}_{L\kappa\sigma}(\mathbf{r}_i) & \text{on-centre sphere } i \\ \sum_{L'j}^{\prime} \tilde{J}_{L'\kappa\sigma}(\mathbf{r}_j) B_{L'L\kappa} & \text{off-centre spheres } j \end{cases}$$

 $B_{L'L\kappa}(\mathbf{R}_j-\mathbf{R}_i)$: structure constants ASW classified by atomic site \mathbf{R}_i , L=(I,m), decay κ , spin σ

Envelope Functions

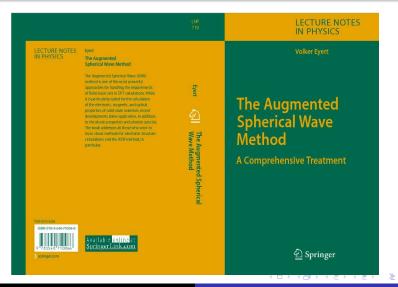
$$H_{L\kappa}^{I}(\mathbf{r}_{i}) := i\kappa^{I+1}h_{I}^{(1)}(\kappa r_{i})Y_{L}(\hat{\mathbf{r}}_{i})$$

 $h_I^{(1)}(\kappa r_i)$: spherical Hankel function

Envelope Functions

$$H_{L\kappa}^{I}(\mathbf{r}_{i}) := i\kappa^{I+1}h_{I}^{(1)}(\kappa r_{i})Y_{L}(\hat{\mathbf{r}}_{i})$$

 $h_i^{(1)}(\kappa r_i)$: spherical Hankel function


Augmented Functions

$$\tilde{H}_{L\kappa\sigma}(\mathbf{r}_i) := \tilde{h}_{l\kappa\sigma}(r_i) Y_L(\hat{\mathbf{r}}_i)
\tilde{J}_{L'\kappa\sigma}(\mathbf{r}_j) := \tilde{\jmath}_{l'\kappa\sigma}(r_j) Y_{L'}(\hat{\mathbf{r}}_j)$$

 \tilde{h} , $\tilde{\jmath}$: numerical solutions of radial Kohn-Sham equation boundary conditions from envelope functions correspond to φ and $\dot{\varphi}$ of LMTO

ASW Method: Further Reading

Outline

- Background
- Full-Potential ASW Method
 - Theoretical Methodology
 - Proof of Concept: Results
- Materials Science: Delafossites

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region

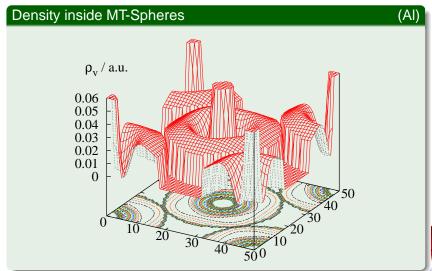
- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential

- inside muffin-tin spheres
- in the interstitial region

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
 - inside muffin-tin spheres
 - in the interstitial region

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
- find representation of products of the basis functions
 - inside muffin-tin spheres
 - in the interstitial region

- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
- find representation of products of the basis functions
 - inside muffin-tin spheres
 - use spherical-harmonics expansions
 - in the interstitial region



- remove total energy error due to overlap of atomic spheres
 - reintroduce non-overlapping muffin-tin spheres
 - restore interstitial region
- find representation of electron density and full potential
- find representation of products of the wave function
- find representation of products of the basis functions
 - inside muffin-tin spheres
 - use spherical-harmonics expansions
 - in the interstitial region
 - no exact spherical-wave representation available!

$$p'(\mathbf{r}) = \sum_n d_n F_n(\mathbf{r})$$

$$\int d^3\mathbf{r}\, F_{n'}^*(\mathbf{r}) \rho^I(\mathbf{r}) = \sum_n d_n \int d^3\mathbf{r}\, F_{n'}^*(\mathbf{r}) F_n(\mathbf{r})$$

$$p'(\mathbf{r}) = \sum_{n} d_{n}F_{n}(\mathbf{r})$$

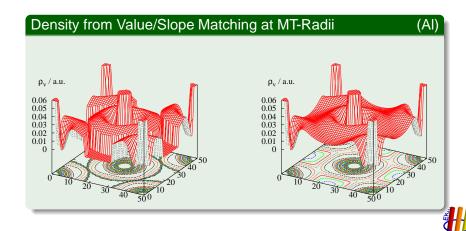
$$p'(\mathbf{r}) = \sum_{n} d_{n} \int d^{3}\mathbf{r} \, F^{*}(\mathbf{r})F$$

- $\int d^3\mathbf{r} \, F_{n'}^*(\mathbf{r}) p'(\mathbf{r}) = \sum_n d_n \int d^3\mathbf{r} \, F_{n'}^*(\mathbf{r}) F_n(\mathbf{r})$
- $F_n(\mathbf{r})$: plane waves
 - integrals exact
 - inefficient
 - Weyrich 1988, Blöchl 1989, VE 1991, Savrasov 1992, Methfessel 2000

$$p^{l}(\mathbf{r}) = \sum_{n} d_{n}F_{n}(\mathbf{r})$$

$$\int d^{3}\mathbf{r} F_{n'}^{*}(\mathbf{r})p^{l}(\mathbf{r}) = \sum_{n} d_{n} \int d^{3}\mathbf{r} F_{n'}^{*}(\mathbf{r})F_{n}(\mathbf{r})$$

- $F_n(\mathbf{r})$: spherical waves
 - would be efficient
 - integrals not known analytically
 - Springborg/Andersen 1987, Methfessel 1988, VE 2002, VE 2006


$$p'(\mathbf{r}) = \sum_{n} d_{n}F_{n}(\mathbf{r})$$

$$\int d^{3}\mathbf{r} F_{n'}^{*}(\mathbf{r})p'(\mathbf{r}) = \sum_{n} d_{n} \int d^{3}\mathbf{r} F_{n'}^{*}(\mathbf{r})F_{n}(\mathbf{r})$$

- $F_n(\mathbf{r})$: spherical waves
 - would be efficient
 - integrals not known analytically
 - Springborg/Andersen 1987, Methfessel 1988, VE 2002, VE 2006
 - Methfessel 1988: match values and slopes at MT-sphere surfaces

From Electron Density to Full Potential

Inside Muffin-Tin Spheres

density, Hartree-potential and xc-potential numerically

Interstitial Region

- density from value/slope matching
- Hartree-potential analytically
- xc-potential from value/slope matching

From Electron Density to Full Potential

Inside Muffin-Tin Spheres

density, Hartree-potential and xc-potential numerically

Interstitial Region

- density from value/slope matching
- Hartree-potential analytically
- xc-potential from value/slope matching

From Full Potential to Basis Functions

Previous Approaches

- project full potential to muffin-tin potential
- construct basis functions from muffin-tin potential
- no minimal basis set! (large basis set!)

Present Approach

- project full potential to ASA potential
- construct basis functions from ASA potential
- minimal basis set!

From Full Potential to Basis Functions

Previous Approaches

- project full potential to muffin-tin potential
- construct basis functions from muffin-tin potential
- no minimal basis set! (large basis set!)

Present Approach

- project full potential to ASA potential
- construct basis functions from ASA potential
- minimal basis set!

Comparison of Approaches

Ole K. Andersen

- ASA geometry used for basis functions
 - → minimal basis set

good!

- ASA geometry used for density and potential
 - → error in total energy

bad!

Comparison of Approaches

Ole K. Andersen

- ASA geometry used for basis functions
 - → minimal basis set good!
- ASA geometry used for density and potential
 - → error in total energy

bad!

Michael S. Methfessel

- MT geometry used for density and potential
 - → accurate total energy

good!

- MT geometry used for basis functions
 - → large basis set

bad!

Comparison of Approaches

Ole K. Andersen

- ASA geometry used for basis functions
- ASA geometry used for density and potential

Michael S. Methfessel

- MT geometry used for density and potential
- MT geometry used for basis functions

present approach

- ASA geometry used for basis functions
 - \rightarrow minimal basis set $\rightarrow \mathcal{O}(\text{ASA})$ speed
- MT geometry used for density and potential
 - → accurate total energy

great!

good!

good!

bad!

bad!

9.00...

great

2nd Generation ASW (VE, 2000s)

- based on 1st generation code
- full-potential ASW method
 - electron densities, spin densities
 - electric field gradients
 - elastic properties, phonon spectra
- optical properties
 - based on linear-response theory
 - direct calculation of $\Re \sigma$ and $\Im \sigma$
 - no Kramers-Kronig relations needed
- transport properties, thermoelectrics
- LDA+U method
 - all "flavours" for double-counting terms (AMF, FLL, DFT

《四》《圖》《意》《意》

2nd Generation ASW (VE, 2000s)

- based on 1st generation code
- full-potential ASW method
 - electron densities, spin densities
 - electric field gradients
 - elastic properties, phonon spectra
- optical properties
 - based on linear-response theory
 - direct calculation of $\Re \sigma$ and $\Im \sigma$
 - no Kramers-Kronig relations needed
- transport properties, thermoelectrics
- LDA+U method
 - all "flavours" for double-counting terms (AMF, FLL, DFT

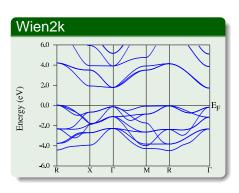
《四》《圖》《意》《意》

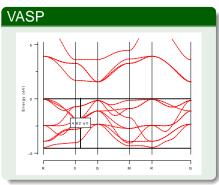
2nd Generation ASW (VE, 2000s)

- based on 1st generation code
- full-potential ASW method
 - electron densities, spin densities
 - electric field gradients
 - elastic properties, phonon spectra
- optical properties
 - based on linear-response theory
 - direct calculation of ℜσ and ℑσ
 - no Kramers-Kronig relations needed
- transport properties, thermoelectrics

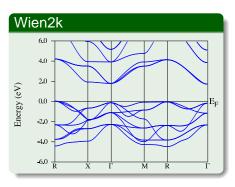
4日 > 4周 > 4 3 > 4 3 >

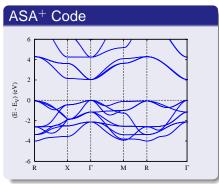
2nd Generation ASW (VE, 2000s)


- based on 1st generation code
- full-potential ASW method
 - electron densities, spin densities
 - electric field gradients
 - elastic properties, phonon spectra
- optical properties
 - based on linear-response theory
 - direct calculation of $\Re \sigma$ and $\Im \sigma$
 - no Kramers-Kronig relations needed
- transport properties, thermoelectrics
- LDA+U method
 - all "flavours" for double-counting terms (AMF, FLL, DFT)

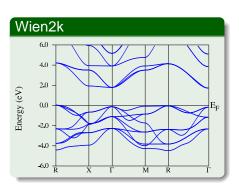


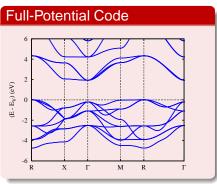
Electronic Structure of BaTiO₃



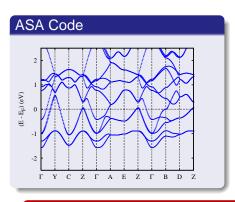


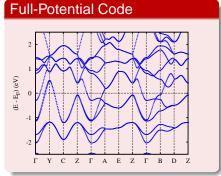
Electronic Structure of BaTiO₃



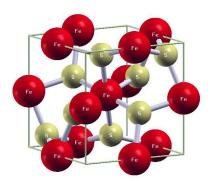


Electronic Structure of BaTiO₃


New!

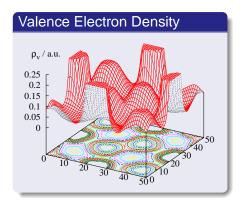

 much better agreement with other full-potential codes (valence-band width, valence states at M-point)

Fermi Surface of MoO₂


New!

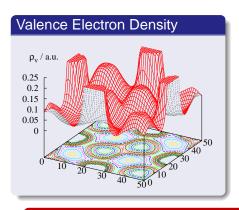
- no hole pocket near Z-point
- much better agreement with ARPES, de Haas-van Alphen

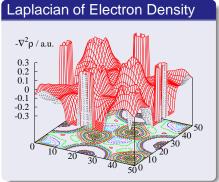
Iron Pyrite: FeS₂



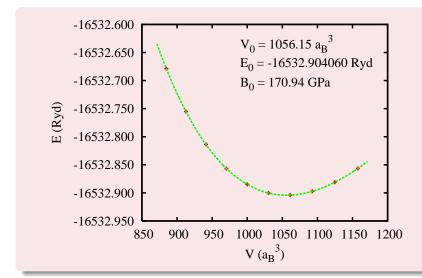
Pyrite

- Pa3̄ (T_h⁶)
- a = 5.4160 Å
- "NaCl structure" sublattices occupied by
 - iron atoms
 - sulfur pairs
- sulfur pairs || (111) axes
- $x_S = 0.38484$
- rotated FeS₆ octahedra


FeS₂: Density and Laplacian



FeS₂: Density and Laplacian



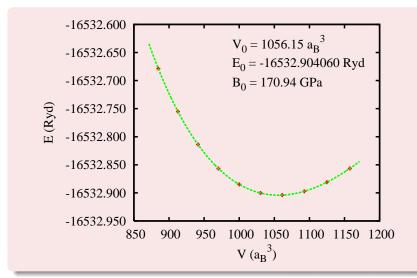
New!

topological analysis (Bader analysis)

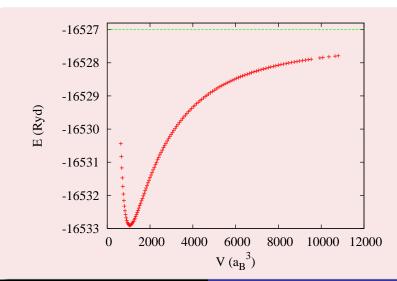
FeS₂: Equilibrium Volume and Bulk Modulus

FeS₂: Equilibrium Volume and Bulk Modulus

Lattice Constant				
10.28	NCPP	Zeng and Holzwarth '94		
10.02	FPLO	Opahle et al. '99		
10.17	CRYSTAL98	Muscat et al. '02		
9.92	CASTEP	Muscat et al. '02		
10.18	FPASW	present work		
10.23	exp.	Finklea et al. '76		
10.22	exp.	Will et al. '84		
10.23	exp.	Stevens et al. '91		

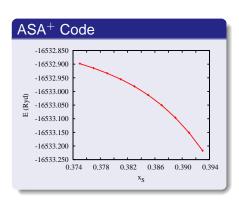


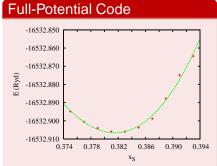
FeS₂: Equilibrium Volume and Bulk Modulus


Bulk Modulus				
187	LMTO	Nguyen-Manh et al. '98		
185	FPLO	Opahle et al. '99		
209	CRYSTAL98	Muscat et al. '02		
208	CASTEP	Muscat et al. '02		
171	FPASW	present work		
148	exp.	Drickamer et al. '66		
118	exp.	Will et al. '84		
215	exp.	Chattopadhyay and von Schnering '85		
157	exp.	Fujii et al. '86		
143	exp.	Jephcoat and Olson '87		
162	exp.	Ahrens and Jeanloz '87		
145	exp.	Blachnik et al. '98		

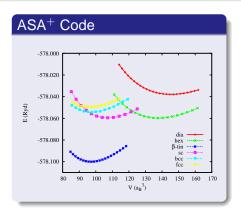
FeS₂: From Atoms to the Solid

FeS₂: From Atoms to the Solid


FeS₂: Structure Optimization



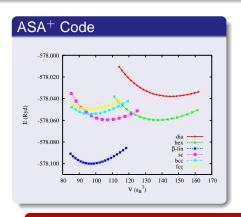
FeS₂: Structure Optimization

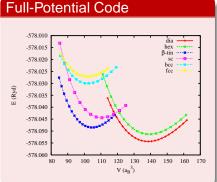


FeS₂: Structure Optimization

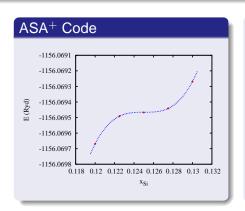
Sulfur Position				
0.378	NCPP	Zeng and Holzwarth '94		
0.377	FPLO	Opahle et al. '99		
0.378	CRYSTAL98	Muscat et al. '02		
0.382	CASTEP	Muscat et al. '02		
0.382	FPASW	present work		
0.386	exp.	Finklea et al. '76		
0.386	exp.	Will et al. '84		
0.385	exp.	Stevens et al. '91		

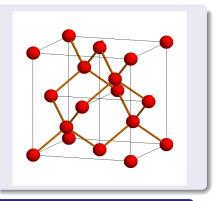
Phase Stability in Silicon


Bad


• β -tin structure most stable # nature (diamond structure)

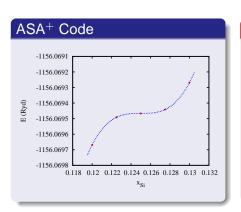
Phase Stability in Silicon

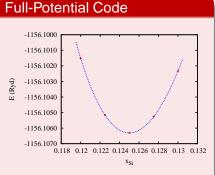



New!

- diamond structure most stable
- ullet pressure induced phase transition to eta-tin structure

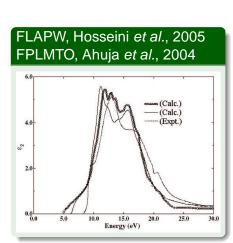
LTO(Γ)-Phonon in Silicon

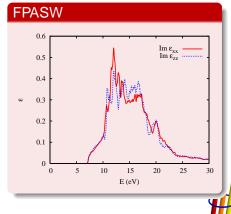



Bad

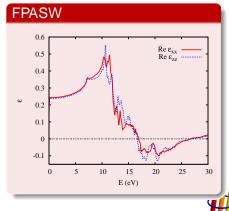
no stable Si position # nature

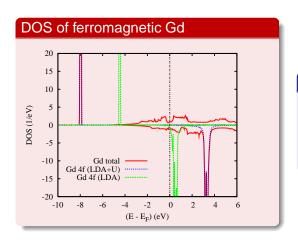
LTO(Γ)-Phonon in Silicon




New!

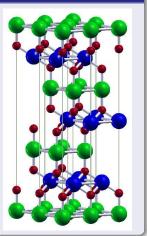
• phonon frequency: $f_{calc} = 15.34 \,\text{THz}$ ($f_{exp} = 15.53 \,\text{THz}$)


Dielectric Functions of Corundum Imaginary Part



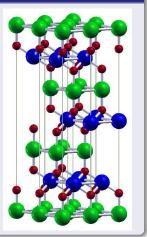
Dielectric Functions of Corundum Real Part

LDA+U-Calculations for Gadolinium


Outline

- Background
- 2 Full-Potential ASW Method
 - Theoretical Methodology
 - Proof of Concept: Results
- Materials Science: Delafossites

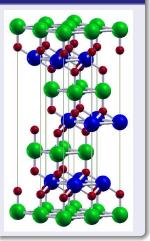
Delafossite Structure


Building Blocks

- rhombohedral lattice
- triangular A-atom layers
- BO₂ sandwich layers
- B-atoms octahedrally coordinated
- linear O-A-O bonds

Delafossite Structure

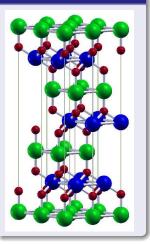
Building Blocks


- rhombohedral lattice
- triangular A-atom layers
- BO₂ sandwich layers
- B-atoms octahedrally coordinated
- linear O-A-O bonds

Issues

- dimensionality
- geometric frustration
- play chemistry

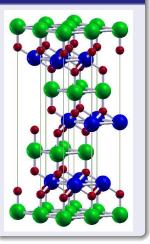
Delafossite Structure


Prototype Materials

- CuFeO₂, CuCrO₂
- CuCoO₂, CuRhO₂
- CuAlO₂, CuGaO₂, CuInO₂, . . .
- PdCrO₂, PdCoO₂, PdRhO₂, PtCoO₂

- semiconductors, AF interactions, (distorted) triangular
- non-mag. semicond., high TEP
- wide-gap semicond., p-type TCO
- very good metals, high anisotropy

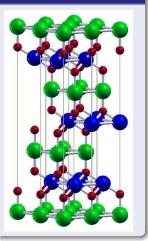
Delafossite Structure


Prototype Materials

- CuFeO₂, CuCrO₂
- CuCoO₂, CuRhO₂
- CuAlO₂, CuGaO₂, CuInO₂, . . .
- PdCrO₂, PdCoO₂, PdRhO₂, PtCoO₂

- semiconductors, AF interactions, (distorted) triangular
- non-mag. semicond., high TEP
- wide-gap semicond., p-type TCO
- very good metals, high anisotropy

Delafossite Structure


Prototype Materials

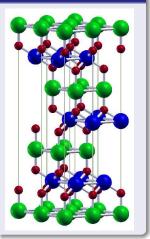
- CuFeO₂, CuCrO₂
- CuCoO₂, CuRhO₂
- CuAlO₂, CuGaO₂, CuInO₂, . . .
- PdCrO₂, PdCoO₂, PdRhO₂, PtCoO₂

- semiconductors, AF interactions, (distorted) triangular
- non-mag. semicond., high TEP
- wide-gap semicond., p-type TCO
- very good metals, high anisotropy

Delafossite Structure

Prototype Materials

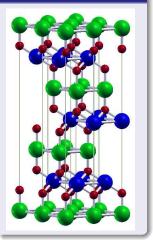
- CuFeO₂, CuCrO₂
- CuCoO₂, CuRhO₂
- CuAlO₂, CuGaO₂, CuInO₂, . . .
- PdCrO₂, PdCoO₂, PdRhO₂, PtCoO₂


- semiconductors, AF interactions, (distorted) triangular
- non-mag. semicond., high TEP
- wide-gap semicond., p-type TCO
- very good metals, high anisotropy

PdCoO₂ and PtCoO₂

Delafossite Structure

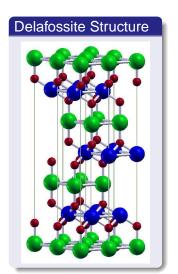
Experimental Results


- very low resistivity
- anisotropy ratio ≈ 200
- PES: only Pd 4d states at E_F
- PES/IPES: E_F in shallow DOS minimum
 - high TEP on doping?

PdCoO₂ and PtCoO₂

Delafossite Structure

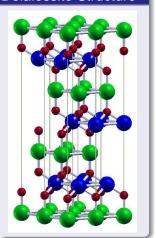
Experimental Results

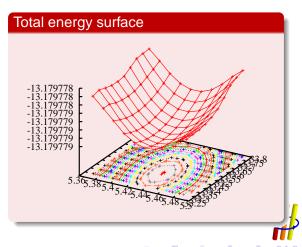

- very low resistivity
- anisotropy ratio ≈ 200
- PES: only Pd 4d states at E_F
- PES/IPES: E_F in shallow DOS minimum
 - high TEP on doping?

Open Issues

role of Pd 4d, Co 3d, and O 2p orbitals?

Structure Optimization in PdCoO₂

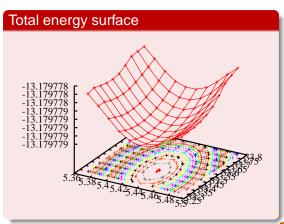




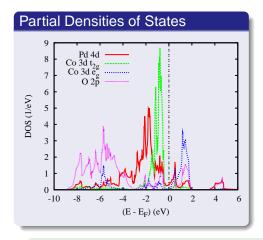
Structure Optimization in PdCoO₂

Delafossite Structure

Structure Optimization in PdCoO₂


Structural Data

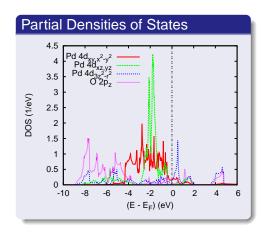
experiment


- $a = 2.83 \,\text{Å}$
- \circ c = 17.743 Å
- $z_0 = 0.1112$

theory

- a = 2.8767 Å
- \circ c = 17.7019 Å
- $z_0 = 0.1100$

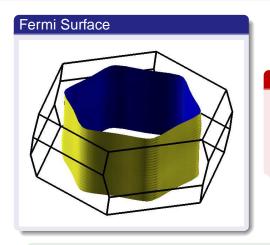
Electronic Properties of PdCoO₂



Results

- Co 3d-O 2p hybridization
- CoO₆ octahedra: Co $3d \Rightarrow t_{2g}$ and e_g
- Co 3d⁶ (Co³⁺) LS
- Pd 4d⁹ (Pd¹⁺)
- Co 3d, O 2p: very small DOS at E_F

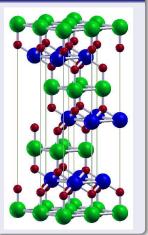
Electronic Properties of PdCoO₂



Results

- broad Pd d_{xy,x²-y²} bands
 - short in-plane Pd-Pd distance
- non-bonding Pd $d_{xz,yz}$ bands
- strong Pd $4d_{3z^2-r^2}$ -O 2p hybridization
- states at E_F:
 Pd d_{xy,x²-y²}, d_{3z²-r²}

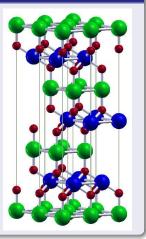
Electronic Properties of PdCoO₂



Results

- quasi-2D
- single band crossing E_F
- but: bands below E_F disperse along Γ-A

Delafossite Structure


Basics

- semiconductor
- AF interactions
- triangular lattice

Delafossite Structure

Basics

- semiconductor
- AF interactions
- triangular lattice

Open Issues

- frustration vs. long-range order
- role of Cu 3d orbitals?
- role of Fe 3d and O 2p orbitals?

Previous Neutron Data

- $T_{N_1} = 16 \,\mathrm{K}, \, T_{N_2} = 11 \,\mathrm{K}$
- Θ_{CW} = −90 K
- magnetic supercells
- no structural distortion
- $m_{Fe^{3+}} = 4.4 \, \mu_{B}$

All-Electron Full-Potential Calculations at O(ASA) Speed

Previous Neutron Data

- $T_{N_1} = 16 \,\mathrm{K}, \, T_{N_2} = 11 \,\mathrm{K}$
- $\Theta_{CW} = -90 \,\mathrm{K}$
- magnetic supercells
- no structural distortion
- \bullet m_{Fe³⁺} = 4.4 μ B

Band Calculations

- rhombohedral structure
- \bullet m_{Fe} = 0.9 μ _B, m_{Fe} = 3.8 μ _B
- $E_g = 0$ in LDA, GGA
- # PES, XES

Previous Neutron Data

•
$$T_{N_1} = 16 \,\mathrm{K}, \, T_{N_2} = 11 \,\mathrm{K}$$

- $\Theta_{CW} = -90 \,\mathrm{K}$
- magnetic supercells
- no structural distortion
- $m_{\text{Fe}^{3+}} = 4.4 \, \mu_{\text{B}}$

New Neutron Data

- magnetic supercells
- monoclinic structure below 4 K

Band Calculations

- rhombohedral structure
- \bullet m_{Fe} = 0.9 μ _B, m_{Fe} = 3.8 μ _B
- $E_g = 0$ in LDA, GGA
- # PES, XES

CuFeO₂

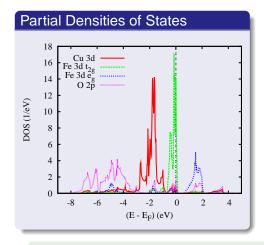
Previous Neutron Data

- $T_{N_1} = 16 \,\mathrm{K}, \, T_{N_2} = 11 \,\mathrm{K}$
- $\Theta_{CW} = -90 \,\mathrm{K}$
- magnetic supercells
- no structural distortion
- $m_{\text{Fe}^{3+}} = 4.4 \, \mu_{\text{B}}$

New Neutron Data

- magnetic supercells
- monoclinic structure below 4 K

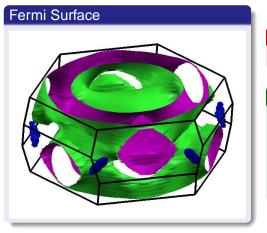
Band Calculations


- rhombohedral structure
- ullet m_{Fe} = 0.9 $\mu_{
 m B}$, m_{Fe} = 3.8 $\mu_{
 m B}$
- $E_g = 0$ in LDA, GGA
- # PES, XES

Open Issues

- spin-state of Fe?
- influence of monoc. structure?

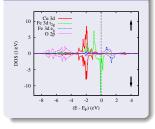
Electronic Properties of CuFeO₂



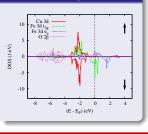
Results

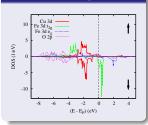
- Fe 3d-O 2p hybridization
- FeO₆ octahedra: Fe $3d \Rightarrow t_{2g}$ and e_g
- Cu 4d¹⁰ (Cu¹⁺)
- Fe 3*d t*_{2*g*}
 - sharp peak at E_F

Electronic Properties of CuFeO₂



Total Energies (mRyd/f.u.), Magn. Moms. (μ_B), Band Gaps (eV)

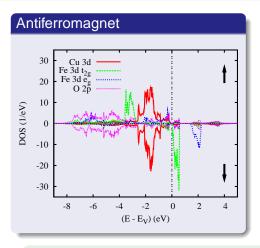

structure	magn. order	ΔE	m_{Fe}	$m_{\rm O}$	E_g
rhomb.	spin-deg.	0.0			-
rhomb.	ferro (LS)	-16.7	1.03	-0.02	-
rhomb.	ferro (IS)	-12.0	2.02	-0.02	-
rhomb.	ferro (HS)	-19.2	3.73	0.21	-


LS Ferromagnet

IS Ferromagnet

HS Ferromagnet

Results

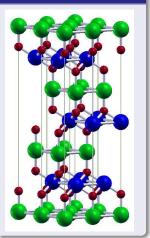

- LS, IS, HS in rhombohedral structure
- HS: O 2p polarization via Fe 3d e_g

Total Energies (mRyd/f.u.), Magn. Moms. (μ_B), Band Gaps (eV)

structure	magn. order	ΔE	m_{Fe}	$m_{\rm O}$	E_g
rhomb.	spin-deg.	0.0			-
rhomb.	ferro (LS)	-16.7	1.03	-0.02	-
rhomb.	ferro (IS)	-12.0	2.02	-0.02	-
rhomb.	ferro (HS)	-19.2	3.73	0.21	-
monoc.	spin-deg.	-6.0			-
monoc.	ferro (LS)	-21.5	1.04	-0.02	-
monoc.	ferro (IS)	-19.0	2.08	-0.02	-
monoc.	ferro (HS)	-32.0	3.62	0.19	-

Results

- monoc. structure
- Fe³⁺ HS
- O 2p polarization via Fe 3d e_q
- $E_g > 0$ in GGA

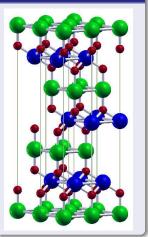

Total Energies (mRyd/f.u.), Magn. Moms. (μ_B), Band Gaps (eV)

structure	magn. order	ΔE	m_{Fe}	$m_{ m O}$	E_g
rhomb.	spin-deg.	0.0			-
rhomb.	ferro (LS)	-16.7	1.03	-0.02	-
rhomb.	ferro (IS)	-12.0	2.02	-0.02	-
rhomb.	ferro (HS)	-19.2	3.73	0.21	-
monoc.	spin-deg.	-6.0			-
monoc.	ferro (LS)	-21.5	1.04	-0.02	-
monoc.	ferro (IS)	-19.0	2.08	-0.02	-
monoc.	ferro (HS)	-32.0	3.62	0.19	-
monoc.	antiferro	-46.0	± 3.72	± 0.08	0.05

CuRhO₂

Delafossite Structure

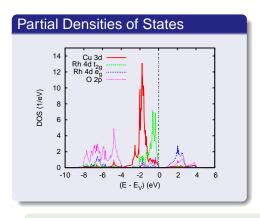
Experimental Findings


- semiconductor
- high TEP on hole doping
 - \bullet Rh³⁺ \longrightarrow Mg²⁺ up to 12%
- high T-independent PF

CuRhO₂

Delafossite Structure

Experimental Findings

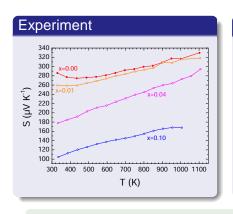

- semiconductor
- high TEP on hole doping
 - \bullet Rh³⁺ \longrightarrow Mg²⁺ up to 12%
- high T-independent PF

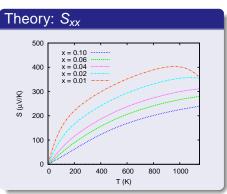
Open Issues

- origin of high TEP
- role of Cu 3d orbitals?
- role of Rh 4d and O 2p orbitals?

Electronic Properties of CuRhO₂

Results


- Rh 4d-O 2p hybridization
- RhO₆ octahedra: Rh $4d \Rightarrow t_{2g}$ and e_g
- \bullet E_g $\approx 0.75\,eV$
- Cu 4d¹⁰ (Cu¹⁺)
- electronic structure: strongly 3D


A. Maignan, VE, et al., Phys. Rev. B 80, 115103 (2009)

Thermoelectric Power of CuRhO₂

A. Maignan, VE, et al., Phys. Rev. B 80, 115103 (2009)

Summary

Full-Potential ASW Method

- ASA Geometry used for Basis Functions
- MT Geometry used for Density and Potential
- Accurate Total Energies
- O(ASA) Speed!
- Optical and Transport Properties implemented
- LDA+U-Method implemented

What's Next?

- Reshape the Basis Set
- Forces? Automated Structure Optimization?
- Exact Exchange (EXX)?

Summary

Full-Potential ASW Method

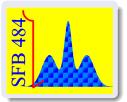
- ASA Geometry used for Basis Functions
- MT Geometry used for Density and Potential
- Accurate Total Energies
- O(ASA) Speed!
- Optical and Transport Properties implemented
- LDA+U-Method implemented

What's Next?

- Reshape the Basis Set
- Forces? Automated Structure Optimization?
- Exact Exchange (EXX)?

Acknowledgments

Caen


R. Frésard, S. Hébert

A. Maignan, C. Martin

Darmstadt/Jülich

P. C. Schmidt, M. Stephan J. Sticht †

Augsburg

K.-H. Höck, T. Kopp, J. Mannhart

Acknowledgments

Caen

R. Frésard, S. Hébert

A. Maignan, C. Martin

Darmstadt/Jülich

P. C. Schmidt, M. Stephan J. Sticht †

Augsburg

K.-H. Höck, T. Kopp, J. Mannhart

Santiago de Chile

Thank You for Your Attention!

