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4 Facultad de F́ısica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 7820436, Chile

Received 29 December 2006 / Received in final form 9 April 2007
Published online 1st June 2007 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2007

Abstract. We report a comparative study of the magnetic properties of free-standing PdN clusters (2 ≤
N ≤ 21) obtained through two different theoretical approaches that are extensively employed in electronic
structure calculations: a semi-empirical Tight-Binding (TB) model and an ab-initio DFT pseudopotential
model. Conclusions are drawn about the reliability of the TB model for the investigation of the electronic
structure and magnetic properties of such complex 4d Transition Metals (TM) systems and we compare
the results with previous systematic DFT calculations and comment on some available experiments in the
literature.

PACS. 75.75.+a Magnetic properties of nanostructures – 36.40.Cg Electronic and magnetic properties of
clusters – 75.50.-y Studies of specific magnetic materials

1 Introduction

Successful production of nanometer scale devices requires
a clear understanding of the physical and electronic prop-
erties of the system at the atomic level. Since clusters
have a wide range of applications, there is a consider-
able interest in the understanding of their geometrical and
electronic structures. The possible existence of ferromag-
netism in Pd clusters has been investigated both theoret-
ically and experimentally without finding the last answer
due to the complex behavior of this 4d element under
low dimensional conditions. Theoretical calculations us-
ing semi-empirical and first-principles methods predict, in
general, weak ferromagnetic behavior for relatively small
size clusters (N ≤ 55) [1–8] although very recent calcula-
tions by Moseler et al. [9] and Kumar et al. [10] obtained
the magnetic moment of the Pd13 cluster in the framework
of the density functional theory (DFT) using pseudopo-
tentials and the GGA approximation for the exchange
and correlation potential, being this magnetic moment
relatively higher than the experimental estimate. From
the experimental side, most of the studies have found ei-
ther non-magnetic behavior or very weak magnetic mo-
ments [11–14] and only very recently large magnetization
at the surface of fine Pd particles (0.75 ± 0.31 µB per
atom) was reported [15] (in contrast with a previous work
of the same group [14] that reported very weak surface
magnetic moment of 0.23 ± 0.19 µB per atom). All these
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results give further support to the complex behavior of
the Pd clusters.

From the theoretical point of view, the DFT methods
and the TB models are the two most extensively used ap-
proaches. Considering the width dispersion in the results,
and with the aim to shed some light in this complex sce-
nario, it is worth performing a benchmark between both
approaches and in particular to analyze the reliability of
the TB model, which being considered as less accurate
than DFT, however it requires a much less computational
efforts (memory and CPU time) than the DFT methods.

For our purpose, we have performed a systematic study
of the electronic structure and magnetic properties for
PdN (2 ≤ N ≤ 21) clusters using on the one hand, the
ab-initio pseudopotential DFT method, as implemented in
the SIESTA code, and on the other hand a self-consistent
real space spd TB method. In particular, we calculate the
magnetic moment as a function of the cluster size. As a
first step, the geometrical structures are determined using
a Genetic Algorithm (GA) on a phenomenological Gupta
potential, and then re-optimized with conjugate gradients
as implemented in the SIESTA code. The electronic prop-
erties of those structures are studied using both SIESTA
and TB and compared. We will also discuss our results
in the context of systematic DFT calculations available in
the literature [10,16].

The paper is organized as follows, in Section 2 we
briefly present the theoretical models. In Section 3, our
results are discussed and compared with previous works,
and Section 4 summarizes the main conclusions.
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2 Computational methods

2.1 Genetic algorithm

In order to determine the minimum energy cluster struc-
ture we use a genetic algorithm, which is a global
search technique based on the principles of natural evo-
lution [17–20].

In particular, we implemented a steady-state GA that
uses a combination of the coordinates of each atom, as
our genome, and applies an additional local minimizer
(classical simplex and Monte Carlo) within the basin [21].
This combination considerably improves the convergence
speed, and has proven to be quite reliable [21,22]. As it is
standard in a steady-state GA, we chose the parents by the
roulette wheel selection method, and we specify the frac-
tion of the population that remains unchanged (elitism).
To produce a new generation we adopt the genetic opera-
tors described by Niesse and Mayne [21].

For a fixed number N of atoms in the cluster, we per-
formed computations for ten different populations (each
of them with 30 individuals). The initial atomic posi-
tions were chosen at random, while the elitism percentage
adopted was 30%. For N = 2–13, we used 5000 iterations
but for N = 14–21, 10 000 iteration were needed to con-
verge to the minimum.

The energy in the GA was computed with the Gupta
phenomenological potential [23,24] which was derived
from Gupta’s expression for the cohesive energy of a bulk
material [23] and is based on the second moment approx-
imation to the tight binding theory. It is a potential that
has a very simple analytical form, depending only on five
parameters. The explicit functional form for the cohesive
energy and the parameter values for Pd used in our calcu-
lations are given by Cleri and Rosato [24]. The parameters
of the potential are fitted to bulk properties: cohesive en-
ergy, lattice parameter, independent elastic constants, and
the vanishing of the energy gradient at the equilibrium
distance.

2.2 Ab-initio DFT pseudopotential calculations

We have performed first-principles DFT calculations us-
ing the pseudopotential SIESTA code (Spanish Initiative
for Electronic Simulation of Thousand Atoms) [25]. This
method employs linear combination of pseudoatomic or-
bitals as basic sets. The atomic core is replaced by a non-
local norm-conserving Troullier-Martins [26] pseudopoten-
tial that is factorized in the Kleinman-Bilander form [27]
and may include nonlinear terms correcting for the signifi-
cant overlap of the core charges with the valence d orbitals.

To optimize the geometrical structures we did a local
relaxation using the conjugate gradient algorithm, start-
ing from the structures obtained via the genetic algorithm
search on a Gupta potential.

In the present calculation, we have used for the ex-
change and correlation potential the LDA as parametrized
by Perdew-Zunger [28]. We have recently demonstrated
that within the SIESTA code, the ground state of small

Pd clusters (up to 7 atoms) does not depend upon the
choice of LDA or GGA for the exchange and correlation
potential [29]. The ionic pseudopotentials were generated
using the atomic configurations: 4d9, 5s1 and 5p0 for Pd
with 2.0, 2.2 and 2.4 a.u. cutoff radii, respectively. The
core corrections are included with a radius of 1.2 a.u.
We have found from the various pseudopotentials tested
that the 4d9, 5s1 configuration reproduced slightly bet-
ter the eigenvalues of different excited states of the iso-
lated Pd atom than the 4d10, 5s0 configuration. Besides,
the ab-initio electronic occupations of small Pd clusters
are closer to this configuration [29] than to the 4d10, 5s0.
Valence states have been described using DZP basis sets
with two orbitals having different radial form to describe
both the 5s and the 4d shells of Pd and one orbital to de-
scribe the 5p shell. We consider an electronic temperature
of 25 meV and a 120 Ry energy cutoff has been used to de-
fine the real space grid for numerical calculations involving
the electron density, a larger cutoff does not substantially
modify the results.

2.3 Semiempirical real-space tight-binding calculations

The spin-polarized electronic structure was determined by
solving self-consistently a TB Hamiltonian for the 4d, 5s
and 5p valence electrons in a mean-field approximation.
The Hamiltonian can be expressed as follows;

H =
∑

iασ

εiασn̂iασ +
∑

αβσ
i�=j

tαβ
ij ĉ†iασ ĉjβσ, (1)

where ĉ†iασ is the operator for the creation of an electron
with spin σ and orbital state α at the atomic site i, ĉjβσ is
the annihilation operator and n̂iασ is the number operator.

The hopping integrals tαβ
ij between orbitals α and β at

sites i and j describe the electronic de-localization within
the system, which is relevant for itinerant magnetism. In
this work, we considered hopping integrals up to third
nearest neighbor distances. These integrals are assumed
to be spin-independent and have been fitted to reproduce
the band structure of bulk Pd [30]. However, since inter-
atomic distances in the clusters differ slightly from the
bulk, the variation of hopping integrals with the inter-
atomic distance rij has been explicitly considered using
the typical power law (r0/rij)l+l′+1, where r0 is the bulk
equilibrium distance and l, l′ are the orbital angular mo-
menta of the (iασ) and (jβσ) states involved in the hop-
ping process [31].

The spin-dependent diagonal terms account for the
electron-electron interaction through a correction shift of
the energy levels

εiασ = ε0
iα + zσ

∑

β

Jαβ

2
µiβ + Ωiα. (2)

Here, ε0
iα are the bare orbital energies of paramagnetic

bulk Pd. The second term is the correction shift due to the
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Table 1. The cluster size (N), the symmetry (structure), the average interatomic distance in Å (distance), average coordination
number (Z) and the magnetic moment from the Tight-Binding (TB), SIESTA, Futschek and Kumar calculations, respectively.
Those values marked with a label in parenthesis correspond to an Isomer within Futschek’s calculation [16]. (a) Isomer at 10 meV
from their double trigonal antiprism ground state, (b) isomer at 17 meV from their edge sharing octahedral-like ground state,
(c) isomer at 20 meV from their edge sharing octahedral-like ground state. Absent values in the last two columns correspond
to those clusters for which Futschek et al. and Kumar et al. do not report isomers with the geometry of the second column.

N structure distance Z TB SIESTA Futschek Kumar

2 dumbbell 2.45 2.00 0.98 1.00 1.00 1.00
3 triangle 2.50 2.00 0.00 0.66 0.00 0.66

4 tetrahedron 2.58 3.00 0.48 0.50 0.50 0.50
5 trigonal bipyramid 2.62 3.60 0.38 0.40 0.40 0.40
6 octahedron (O) 2.63 4.00 0.35 0.33 0.33 0.00
7 pentagonal bipyramid (PB) 2.66 4.60 0.61 0.29 0.29 0.29

8 O+2 2.64 4.50 0.50 0.49 0.25 0.25
9 PB+2 2.67 5.12 0.49 0.44 0.44 (a) 0.44
10 PB+3 2.68 5.40 0.59 0.60 0.60

11 PB+4 2.69 5.64 0.36 0.55 0.55
12 PB+5 2.70 6.00 0.49 0.50 0.50 (b) 0.50
13 icosahedron (I) 2.71 6.50 0.61 0.62 0.62 (c) 0.62
14 I+1 2.68 6.43 0.13 0.57 0.57

15 I+2 2.68 6.53 0.12 0.53 0.53
16 distorted I-like 2.68 6.38 0.00 0.25
17 distorted I-like 2.67 6.67 0.04 0.24
18 distorted I-like 2.67 6.44 0.05 0.34

19 double Icosahedron (DI) 2.69 7.16 0.41 0.32 0.32
20 distorted DI 2.68 6.70 0.10 0.30
21 distorted DI 2.70 7.05 0.15 0.29

spin-polarization of the electrons at site i (µiβ = 〈niβ↑〉−
〈niβ↓〉). Jαβ are the exchange integrals and zσ is the sign
function (z↑ = 1, z↓ = −1).

As usual, the exchange integrals involving s and p elec-
trons were neglected taking into account only the integral
corresponding to d electrons (Jdd). Note that although
the sp exchange integrals are neglected, spin-polarization
of the de-localized sp states will exist as a consequence of
hybridization with the d states. Usually Jdd is obtained by
fitting to the bulk magnetic moment. However, since palla-
dium bulk metal is paramagnetic, the exchange parameter
(Jdd = 0.60 eV) has been chosen such that reproduces the
ab-initio DFT calculations of the average magnetic mo-
ment of a Pd13 icosahedral cluster by Moseler et al. [9]
and Kumar et al. [10] and, at the same time, the LDA
SIESTA result. We have chosen the Pd13 cluster for the
fit because it is the most studied cluster in the literature,
and agreement exists concerning its icosahedral geometry.

The site- and orbital-dependent self-consistent poten-
tial Ωiα assures the local electronic occupation, fixed in
our model by linearly interpolating between the atom and
the metal occupations according to the local coordination
at site i. We have used [Kr] 4d9 5s1 for the electronic con-
figuration of Pd atom. The metal electronic occupations,
on the other hand, are 0.60, 0.45, and 8.95 for the s, p,
and d electrons of Pd, respectively. The local neutrality
approximation used in this work has been probed to be a
good approximation in transition metal systems [32] and
in the present case, atomic and bulk sp and d occupations
are similar.

The spin-dependent local electronic occupations are
self-consistently determined from the local densities of
states

〈n̂iασ〉 =
∫ εF

−∞
Diασ(ε)dε, (3)

which are calculated at each iteration by using the recur-
sion method [31]. In this way, the distribution of the local
magnetic moments (µi =

∑
α µiα) and the average mag-

netic moment per atom (µ = 1
N

∑
i µi) of the PdN clusters

are obtained at the end of the self-consistent cycle. The
number of recursion levels used in our calculation is large
enough to assure the stability of the results. The imagi-
nary part of the energy for the calculation of the density of
states within the recursion method broaders the electronic
spectrum of states as the electronic temperature used in
SIESTA.

The same model was used in previous works [33] for the
study of Rh clusters and for the study of the single FCC-
like Pd clusters [34]. The good agreement with available
data in the literature for free clusters, give us confidence
in the transferability of the parameterization.

3 Geometrical structures

In Table 1, we list the main geometrical and electroni-
cal properties of the palladium clusters [35], illustrated in
Figure 1. In general, we obtain an icosahedral-like growth
pattern with some structural disorder, particularly be-
tween symmetric closed shell clusters (N = 8 to 13, 13
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Fig. 1. Ground-state geometric structures of PdN clusters
(2 ≤ N ≤ 21) obtained with the SIESTA code.

Fig. 2. Distribution of the first nearest neighbours distance (in
Å) within the different clusters (N = 4 to 21). The numbers
correspond to the cluster size N , the horizontal lines quantify
the dispersion of the interatomic distances, and the vertical
dashed line marks the fcc Pd bulk interatomic distance.

to 19) and for N = 20 and 21. To illustrate such struc-
tural disorder within the clusters, we plot in Figure 2 the
distribution of first nearest neighbour (FNN) distances.
At a given site i within the cluster, we consider as FNN
those atoms located at distances within 0.85 to 1.15 of the
bulk interatomic one. The structural disorder in our clus-
ters (reflected by the absence of a discrete number of well
defined interatomic distances) results from the fully un-
constrained relaxation process. Slightly non-symmetrical
arrangements are obtained for the closed shell clusters.
Notice that the structural disorder or amorphization is
more pronounced for the open shell clusters. For the closed
shell ones (see for instance N = 13 and N = 19) there are
two and three well defined interatomic distances, respec-
tively.

Let us now compare these geometric structures with
those obtained by Futschek et al. [16], using the VASP
DFT code in the GGA approximation and by Kumar
et al. [10] using an ultra-soft pseudopotentials DFT GGA
method. In comparison with Futschek et al. [16], for clus-
ters with N ≤ 8 the geometries are essentially the same,
whereas for larger clusters they are different. For N = 9
to 13 Futschek et al. predict double trigonal antiprism
(N = 9) and edge sharing octahedral plus additional
atoms (N = 10 to 13). In contrast we predict for N =
9 to 13 pentagonal bipyramids of seven atoms plus addi-
tional atoms building the icosahedral shape.

As a summary, in the case of N ≤ 13, Futschek’s Pd
clusters can be seen as relaxed fragments of the fcc crystal
bulk structure, whereas ours are mainly non-crystalline
structures, particularly in the range of 7 ≤ N ≤ 13, in
which five fold symmetry is observed.

Comparing with Kumar et al., for N = 2–15 and 19,
their geometries are similar to ours. For the rest of the
clusters, their structures are icosahedral-like. In our case,
for N = 16–18, 20 and 21, the structures have some struc-
tural disorder as previously described in Figure 2. Other-
wise they are also icosahedral-like.

In general, clusters having similar structures have also
similar interatomic distances (within 2%) in both our
SIESTA calculations and in Futschek et al. and Kumar
et al. calculations.

But It is important to stress that differences in the
geometrical structures are obtained in some clusters, as
indicated above, depending on the approximations used
for the exchange-correlation potential and for the treat-
ment of the core states within the DFT.

4 Magnetic moments

The spin magnetic moment is obtained from the differ-
ence between the electronic populations with different spin
component. Therefore for its determination it is not cru-
cial to exactly determine the position of the electronic
states as long as the occupied states are well counted. In
Figure 3 we present the average magnetic moment per
atom for the ground state Pd clusters, as calculated with
TB and SIESTA. For the sake of comparison, we have also
included the ground state results by Kumar et al. [10] and
by Futschek et al. [16] when available. In general the TB
and the SIESTA magnetic trends as increasing cluster size
are in a fairly good agreement, similar to the one exist-
ing between SIESTA and other DFT calculations. This is
illustrated also in Table 1, where we show the results for
those sizes for which the same geometry can be obtained
from the three DFT calculations (notice that for N = 9
to 13, the geometries considered from Futschek et al. are
metastable isomers).

Let us enter now in more detail. When we compare
our SIESTA and TB calculations, we can distinguish two
regions as far as the magnetic behavior is concerned. For
clusters with N ≤ 13, the magnetic moments resulting
from both calculations are in general very similar (not
only the general trend but also the numerical values); the
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Fig. 3. Average magnetic moment per atom as a function of
the cluster size obtained from SIESTA and TB calculations.
We also report the results of references [10,30].

differences are located at N = 3, 7, and 11. The largest
difference corresponds to N = 3, for which the TB cal-
culation predicts a non-magnetic behavior whereas the
SIESTA calculation gives a magnetic solution. However, it
is worth noticing that in Futschek’s DFT calculation, both
solutions are degenerated and may coexist. For N ≥ 14,
the TB calculation underestimate in general the magnetic
moment (an exception being N = 19) although both cal-
culations lead to a similar trend, with minima around
N = 16 and 17. Notice that these minima are not found
in the DFT calculations of Kumar et al. that, on the other
hand, overestimate the SIESTA results.

Pursuing the comparison among the different DFT
results, for N = 2, 4–7, our SIESTA calculation gives
the same magnetic moments as Futschek et al. [16]. For
N = 6 we have a magnetic octahedron as the ground
state whereas Kumar et al. [10] has a non-magnetic solu-
tion. However Kumar’s magnetic solution is only 3 meV
per atom above the non-magnetic one [29] (nearly de-
generated). For Pd8, our magnetic moment is different
to that found in other DFT calculations, despite having
the same ground-state structure. Our most stable solution
has 0.50µB per atom whereas Futschek et al. and Kumar
et al. obtain 0.25µB per atom. It is worth to noticing
that Futschek et al. have found another metastable mag-
netic solution with 0.50µB per atom for the same geo-
metrical structure, with an energy difference of 11 meV
per atom. For Pd9 Futschek et al. predict a double trigo-
nal antiprism with 0.22µB per atom whereas we obtain a
pentagonal bipyramid plus two additional atoms, with a
magnetic moment per atom of 0.44µB. For this size, our
calculation agrees with Kumar’s result both in the struc-
ture and in the magnetic moment. In the case of Pd10, the
structure and the total magnetic moment obtained by us
and by Futschek et al. are very different. Our structure
is icosahedral-like and the magnetic moment per atom is
0.60µB whereas Futschek’s structure is an edge sharing

Fig. 4. Geometric structures of some selected isomers of PdN

(5 ≤ N ≤ 15) in an increasing order of their size and energy.

double octahedra and the magnetic moment is 0.40µB .
For N = 11 and 12, our results agree with those of Kumar
and with one of the isomers given in Futschek’s work. Fi-
nally, for N = 13, our lower energy structure is icosahedral
with a magnetic moment of 0.61µB, which is the same
structure found by Kumar et al. [10]. Futschek’s ground
state structure is an edge sharing octahedral plus three
additional atoms, with magnetic moment of 0.46µB; the
corresponding icosahedron calculated by Futschek et al. is
10 meV per atom above their ground state and with the
same magnetic moment as our SIESTA value.

In general our geometric structures and magnetic mo-
ments are in better agreement with those of Kumar’s et al.
than with those of Futschek et al., and differences exist
among the different DFT calculations.

The overall results are consistent with the experiments
that find weak magnetic moments [11–14]. In particular,
Cox’s experimental observations indicate that Pd13 has
a magnetic moment of ≈0.4 µB per atom. A decrease
in the magnetic moment with the cluster size is also
found [11,12]. No further comparison is possible due ei-
ther to the lack of detailed results in the small size region
or to the huge cluster sizes grown in some experimental
studies [13,14].

With the aim to see the dependence of the magnetic
moment with the different structures in a more systematic
way, we have calculated the average magnetic moment of
some selected isomers and compared the results with those
obtained for the ground state as calculated with SIESTA.
The isomers are illustrated in Figure 4 and the correspond-
ing structural data and energy difference with respect to
the ground state are summarized in Table 2. For certain
sizes, we have considered several isomers because of their
highly symmetric closed shell geometric structure or be-
cause they correspond to the ground state or to the first
isomer reported in other DFT calculations [10,16]. For in-
stance, in the case of N = 8, the structures shown in Fig-
ure 4 have been reported by Kumar and coworkers [10],
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Table 2. We give, for the isomers illustrated in Figure 4, struc-
ture, the average interatomic distance, average coordination
number (Z), average magnetic moment (AMM), and energy
difference per atom with respect to the ground state calculated
with the SIESTA.

N structure distance Z AMM ∆E
(meV)

5 square pyramid 2.58 3.20 0.40 4
6 trigonal bipyramid + 1 2.65 4.00 0.33 64
7 O + 1 2.64 4.28 0.28 18
8a PB +1 2.66 4.75 0.50 34
8b tetragonal antiprism 2.62 4.00 0.00 39
9 tricapped prism 2.64 4.66 0.44 24
10a double O 2.65 5.00 0.40 4
10b two interlinked PB 2.67 5.20 0.40 22
10c tetragonal antiprism + 2 2.64 4.80 0.40 43
13 decahedron 2.68 5.69 0.62 35
15 hexagonal antiprism+2 2.73 6.66 0.40 12

whereas the ground state in our case is the O+2 struc-
ture (octahedron plus two atoms or dodecadeltahedron as
illustrated in Fig. 1). In the case of N = 10, we have cal-
culated the magnetic moment of three different isomers,
the first one (10a) has been reported as the ground state
by Futschek and coworkers [16] whereas the other two
(10b and 10c) are closer isomers obtained by Kumar and
coworkers [10].

The average interatomic distances for the different iso-
mers are within less than 2% with respect to the ground
state (see Tabs. 1 and 2). For several isomers, we have
found energy differences of the order of few meV/atom,
indicating a possible coexistence of those isomers with the
ground state at room temperature, however this analysis
would require a thourough study in which the vibrational
modes should be calculated for the determination of the
entropy and free energy neccessary to obtain the relative
population of the different isomers [33]. The study itself
is interesting but is cumberson and is not our intention to
perform this work inhere. Moreover, in general the aver-
age magnetic moments of these isomer are similar to those
obtained for the ground state, with only some exceptions
like the tetragonal antiprism (second cluster shown for
N = 8) whose average magnetic moment is 0 µB and for
N = 10 for which the three isomers have an average mag-
netic moment of 0.4 µB instead of 0.6 µB obtained for the
corresponding ground state (PB+3). Differences with the
values reported by other calculations are also exceptional.

5 Conclusions

We have performed a systematic study of the magnetic
moments of PdN (2 ≤ N ≤ 21) clusters using the
ab-initio pseudopotential DFT method, as implemented
in the SIESTA code, and a self-consistent real space spd
TB method, in order to perform a benchmark of two of
the most extensively used approaches in this field.

The TB and the SIESTA results are in a fairly good
qualitative agreement, similar to the agreement between

different DFT calculations. The overall results for the
magnetic properties are consistent with the experiments
that find weak magnetic moments in Pd clusters [11–14].
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Dávila, Rev. Mex. F́ıs. 45, 443 (1998)

3. S. Bouarab, C. Demangeat, A. Mokrani, H. Dreyssé, Phys.
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