Mecánica Cuántica I Profesor: Gonzalo Gutiérrez Ayudante: Felipe González C.

Solución Tarea 2

1. Tenemos el conjunto de operadores

$$\check{\mathbf{A}}_{\theta} = \frac{1}{2} \begin{pmatrix} \cos \theta & -i \sin \theta \\ i \sin \theta & -\cos \theta \end{pmatrix},$$

uno por cada valor de θ .

- a) Cada uno de estos operadores puede venir de un observable físico, ya que todo observable físico tiene asociado un operador autohermítico, y estos lo son.
- b) Para $\pi \neq \theta \neq 0$, los autovectores normalizados son

$$\left|\frac{1}{2};\theta\right\rangle = \frac{1}{\sqrt{2(1-\cos\theta)}} \left(\begin{array}{c} i\sin\theta \\ \cos\theta - 1 \end{array}\right) \quad \text{y} \qquad \left|-\frac{1}{2};\theta\right\rangle = \frac{1}{\sqrt{2(1+\cos\theta)}} \left(\begin{array}{c} i\sin\theta \\ \cos\theta + 1 \end{array}\right),$$

en donde $\left|\pm\frac{1}{2};\theta\right>$ es el autovector que entrega el autovalor $\pm\frac{1}{2}$ frente a $\check{\mathbf{A}}_{\theta}$. Esto quiere decir que independiente del valor de θ , el operador entregará $\frac{1}{2}$ o $-\frac{1}{2}$. Ahora, para comprobar la completitud de la base, sumamos sus proyectores para comprobar que esta suma sea el operador identidad:

$$\begin{split} \left| \frac{1}{2};\theta \right\rangle \left\langle \frac{1}{2};\theta \right| + \left| -\frac{1}{2};\theta \right\rangle \left\langle -\frac{1}{2};\theta \right| &= \frac{1}{2(1-\cos\theta)} \left(\begin{array}{c} i\sin\theta \\ \cos\theta - 1 \end{array} \right) \left(\begin{array}{c} -i\sin\theta \\ \cos\theta - 1 \end{array} \right) \\ &+ \frac{1}{2(1+\cos\theta)} \left(\begin{array}{c} i\sin\theta \\ \cos\theta + 1 \end{array} \right) \left(\begin{array}{c} -i\sin\theta \\ \cos\theta + 1 \end{array} \right) \\ &= \frac{1}{2(1-\cos\theta)} \left(\begin{array}{cc} \sin^2\theta & i\sin\theta\cos\theta - i\sin\theta \\ -i\sin\theta\cos\theta + i\sin\theta & (\cos\theta - 1)^2 \end{array} \right) \\ &+ \frac{1}{2(1+\cos\theta)} \left(\begin{array}{cc} \sin^2\theta & i\sin\theta\cos\theta + i\sin\theta \\ -i\sin\theta\cos\theta - i\sin\theta & (\cos\theta + 1)^2 \end{array} \right). \end{split}$$

Sumando ambas matrices, obtenemos la matriz

$$\frac{1}{2} \left(\begin{array}{c} \sin^2 \theta \left(\frac{2}{1 - \cos^2 \theta} \right) & i \sin \theta \cos \theta \left(\frac{2}{1 - \cos^2 \theta} \right) - i \sin \theta \left(\frac{2 \cos \theta}{1 - \cos^2 \theta} \right) \\ -i \sin \theta \cos \theta \left(\frac{2}{1 - \cos^2 \theta} \right) + i \sin \theta \left(\frac{2 \cos \theta}{1 - \cos^2 \theta} \right) \end{array} \right),$$

la cual es igual a

$$\frac{1}{2} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \check{\mathbf{I}} = \left| \frac{1}{2}; \theta \right\rangle \left\langle \frac{1}{2}; \theta \right| + \left| -\frac{1}{2}; \theta \right\rangle \left\langle -\frac{1}{2}; \theta \right|,$$

lo que demuestra la completitud de la base.

La forma de escribir estos autovectores, presenta problemas de indeterminación cuando $\theta = 0$ y cuando $\theta = \pi$. En estos casos se tiene

$$\check{\mathbf{A}}_0 = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad \check{\mathbf{A}}_{\pi} = \frac{1}{2} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix},$$

Cuyos autovectores son claramente

$$\left|\frac{1}{2};0\right\rangle = \left(\begin{array}{c}1\\0\end{array}\right), \quad \left|-\frac{1}{2};0\right\rangle = \left(\begin{array}{c}0\\1\end{array}\right), \quad \left|-\frac{1}{2};\pi\right\rangle = \left(\begin{array}{c}1\\0\end{array}\right), \quad \left|\frac{1}{2};\pi\right\rangle = \left(\begin{array}{c}1\\0\end{array}\right),$$

en cuyos casos la completitud es obvia.

- c) Como ya mencionamos, en una medición de $\check{\mathbf{A}}_{\theta}$ sólo se puede obtener $\frac{1}{2}$ o $-\frac{1}{2}$.
- d) Si se mide $\dot{\mathbf{A}}_z$ ($\theta=0$) y se obtiene el mayor de los autovalores posibles, significa que el resultado de la medición fué $\frac{1}{2}$. Por lo tanto, luego de la medición, el sistema queda en el estado $\left|\frac{1}{2};0\right\rangle$. Si ahora volvemos a medir $\dot{\mathbf{A}}_z$, la probabilidad de obtener el otro resultado posible de una medición $\left(-\frac{1}{2}\right)$ es

$$\Pr\left(-\frac{1}{2}\right) = |\langle -\frac{1}{2}; 0 | \frac{1}{2}; 0 \rangle|^2 = 0,$$

ya que los estados de $\check{\mathbf{A}}_z$ son ortonormales. Esto quiere decir que es imposible obtener el autovalor $-\frac{1}{2}$ despues de haber obtenido $\frac{1}{2}$ en una medición de $\check{\mathbf{A}}_z$ y, por lo tanto, en esta segunda medición de $\check{\mathbf{A}}_z$, se obtendrá nuevamente $\frac{1}{2}$ con un 100 % de certeza.

e) Si se mide $\check{\mathbf{A}}_z$ ($\theta=0$) y se obtiene el mayor de los autovalores posibles, significa que el resultado de la medición fué $\frac{1}{2}$. Por lo tanto, luego de la medición, el sistema queda en el estado $\left|\frac{1}{2};0\right\rangle$. Supongamos que ahora se mide $\check{\mathbf{A}}_{\theta}$, con θ arbitrario. Como los únicos resultados posibles de una medición de $\check{\mathbf{A}}_{\theta}$ son los autovalores del operador, ahora podemos obtener tanto $\frac{1}{2}$ como $-\frac{1}{2}$. La probabilidad de obtener $-\frac{1}{2}$ será

$$\Pr\left(-\frac{1}{2}\right) = \left|\left\langle -\frac{1}{2}; \theta \right| \frac{1}{2}; 0\right\rangle \right|^2,$$

ya que el sistema se encuentra en el estado $\left|\frac{1}{2};0\right>$. Evaluando el producto interno, se obtiene

$$\Pr\left(-\frac{1}{2}\right) = \left|\frac{1}{\sqrt{2(1+\cos\theta)}} \left(-i\sin\theta \cos\theta + 1\right) \left(\frac{1}{0}\right)\right|^2 = \frac{\sin^2\theta}{2(1+\cos\theta)},$$

mientras que la probabilidad de obtener $(\frac{1}{2})$ será

$$\Pr\left(\frac{1}{2}\right) = 1 - \Pr\left(-\frac{1}{2}\right).$$

Esto nos dice que la probabilidad de obtener cada uno de los autovalores va a depender del ángulo θ . En particular, reobtenemos el resultado anterior: si $\theta = 0$, la probabilidad de medir $-\frac{1}{2}$ será 0%; pero existe un valor de theta para el cual es posible obtener $-\frac{1}{2}$ con un 100% de certeza. Esto se da cuando

$$\Pr\left(-\frac{1}{2}\right) = \frac{\sin^2 \theta}{2(1 + \cos \theta)} = 1,$$

lo que implica que θ debe cumplir la ecuacioón

$$\sin^2 \theta = 2 + 2\cos \theta.$$

Escribiendo $\sin^2\theta$ como $1-\cos^2\theta$, obtenemos la ecuación cuadrática

$$\cos^2 \theta + 2\cos \theta + 1 = 0 = (\cos \theta + 1)^2,$$

cuya solución es $\cos \theta = -1$, es decir, cuando $\theta = \pi$.

El sentido físico de esto es que si yo mido en un ángulo $\theta=0$ y colapso la función de onda a $\left|\frac{1}{2};0\right>$, que podemos ejemplificar como el estado "spin up", voy a volver a obtener este estado cada vez que vuelva a medir el spin. Pero si yo me pongo "de cabeza" $(\theta=\pi)$, ahora veo que lo que antes era arriba, ahora es abajo, y viceversa. Por lo tanto, ahora veo el antiguo estado "spin up" como "spin down". Es por esto que puedo obtener el otro autovalor con certeza absoluta.

f) Si se mide $\check{\mathbf{A}}_z$ y se obtiene $-\frac{1}{2}$, el sistema queda en el estado $\left|-\frac{1}{2};0\right\rangle$. Si luego se mide $\check{\mathbf{A}}_{\frac{\pi}{2}}$ y se obtiene $\frac{1}{2}$, el sistema queda en $\left|\frac{1}{2};\frac{\pi}{2}\right\rangle$. La probabilidad de obtener $-\frac{1}{2}$ al medir $\check{\mathbf{A}}_z$ es

$$\Pr\left(-\frac{1}{2}\right) = \left| \left\langle -\frac{1}{2}; 0 \left| \frac{1}{2}; \frac{\pi}{2} \right\rangle \right|^2 = \frac{(\cos\frac{\pi}{2} - 1)^2}{2(1 - \cos\frac{\pi}{2})} = \frac{1}{2},$$

por lo tanto, hay igual posibilidad de obtener $-\frac{1}{2}$ como $\frac{1}{2}$ al realizar esta última medición luego de realizar la anterior.

2. Consideremos primero los conmutadores del momento angular con los operadores de posición y momentum:

$$\begin{split} [\check{\mathbf{L}}_i, \check{\mathbf{r}}_j] &= [\varepsilon_{i\ell m} \check{\mathbf{r}}_\ell \check{\mathbf{p}}_m, \check{\mathbf{r}}_j] \\ &= \varepsilon_{i\ell m} \left(\check{\mathbf{r}}_\ell [\check{\mathbf{p}}_m, \check{\mathbf{r}}_j] + [\check{\mathbf{r}}_\ell, \check{\mathbf{r}}_j] \check{\mathbf{p}}_m \right) \\ &= \varepsilon_{i\ell m} \check{\mathbf{r}}_\ell (-i\hbar \delta_{mj} \check{\mathbf{I}}) \\ &= i\hbar \varepsilon_{ij\ell} \check{\mathbf{r}}_\ell \end{split}$$

у

$$\begin{split} [\check{\mathbf{L}}_{i}, \check{\mathbf{p}}_{j}] &= [\varepsilon_{i\ell m} \check{\mathbf{r}}_{\ell} \check{\mathbf{p}}_{m}, \check{\mathbf{p}}_{j}] \\ &= \varepsilon_{i\ell m} \left(\check{\mathbf{r}}_{\ell} [\check{\mathbf{p}}_{m}, \check{\mathbf{p}}_{j}] + [\check{\mathbf{r}}_{\ell}, \check{\mathbf{p}}_{j}] \check{\mathbf{p}}_{m} \right) \\ &= \varepsilon_{i\ell m} (i\hbar \delta_{\ell j} \check{\mathbf{I}}) \check{\mathbf{p}}_{m} \\ &= i\hbar \varepsilon_{ijm} \check{\mathbf{p}}_{m}. \end{split}$$

Con esto,

$$\begin{split} [\check{\mathbf{L}}_{i},\check{\mathbf{L}}_{j}] &= [\check{\mathbf{L}}_{i},\varepsilon_{jk\ell}\check{\mathbf{r}}_{k}\check{\mathbf{p}}_{\ell}] \\ &= \varepsilon_{jk\ell} \left(\check{\mathbf{r}}_{k} [\check{\mathbf{L}}_{i},\check{\mathbf{p}}_{\ell}] + [\check{\mathbf{L}}_{i},\check{\mathbf{r}}_{k}]\check{\mathbf{p}}_{\ell} \right) \\ &= \varepsilon_{jk\ell} \left(\check{\mathbf{r}}_{k}\varepsilon_{i\ell m} (i\hbar\check{\mathbf{p}}_{m}) + \varepsilon_{ikm} (i\hbar\check{\mathbf{r}}_{m})\check{\mathbf{p}}_{\ell} \right) \\ &= i\hbar \left(\varepsilon_{jk\ell}\varepsilon_{i\ell m}\check{\mathbf{r}}_{k}\check{\mathbf{p}}_{m} + \varepsilon_{jk\ell}\varepsilon_{ikm}\check{\mathbf{r}}_{m}\check{\mathbf{p}}_{\ell} \right) \\ &= i\hbar \left((-\delta_{ji}\delta_{km} + \delta_{ki}\delta_{jm})\check{\mathbf{r}}_{k}\check{\mathbf{p}}_{m} + (\delta_{ji}\delta_{\ell m} - \delta_{\ell i}\delta_{jm})\check{\mathbf{r}}_{m}\check{\mathbf{p}}_{\ell} \right) \\ &= i\hbar \left((-\delta_{ji}\check{\mathbf{r}}_{k}\check{\mathbf{p}}_{k} + \check{\mathbf{r}}_{i}\check{\mathbf{p}}_{j} + \delta_{ji}\check{\mathbf{r}}_{\ell}\check{\mathbf{p}}_{\ell} - \check{\mathbf{r}}_{j}\check{\mathbf{p}}_{i} \right) \\ &= i\hbar \left((-\delta_{ji}\check{\mathbf{r}}_{i})\check{\mathbf{r}}_{i} + \check{\mathbf{r}}_{i}\check{\mathbf{p}}_{j} + \delta_{ji}\check{\mathbf{r}}_{i} + \check{\mathbf{p}}_{i} - \check{\mathbf{r}}_{j}\check{\mathbf{p}}_{i} \right) \\ &= i\hbar \left(\check{\mathbf{r}}_{i}\check{\mathbf{p}}_{j} - \check{\mathbf{r}}_{j}\check{\mathbf{p}}_{i} \right) \\ &= i\hbar (\check{\mathbf{r}}_{i}\check{\mathbf{r}}_{j} - \check{\mathbf{r}}_{j}\check{\mathbf{p}}_{i}) \\ &= i\hbar (\check{\mathbf{L}}_{k}. \end{split}$$