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Discussions of the foundations of statistical mechanics, how they lead to thermodynamics, and the
appropriate definition of entropy have occasioned many disagreements. I believe that some or all of
these disagreements arise from differing, but unstated assumptions, which can make opposing
opinions difficult to reconcile. To make these assumptions explicit, I discuss the principles that have
guided my own thinking about the foundations of statistical mechanics, the microscopic origins of
thermodynamics, and the definition of entropy. The purpose of this paper will be fulfilled if it paves
the way to a final consensus, whether or not that consensus agrees with my point of view. © 2011
American Association of Physics Teachers.
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I. INTRODUCTION

“Nobody really knows what entropy really is.”
—John von Neumann1

Since I began speaking and publishing on the relation be-
tween statistical mechanics and thermodynamics in general
and the meaning of entropy in particular,2–7 I’ve encountered
a diversity of opinion among experts that is remarkable for a
field that is well over a century old. Most colleagues with
whom I have discussed the matter have indicated that they
believe their views are essentially the same as those of the
majority of physicists. However, when we discuss details,
opinions turn out to be quite diverse and, at times,
contentious.4,8

The following is a partial list of opinions I have encoun-
tered in the literature and in discussions with other scientists:

• The theory of probability has nothing to do with statistical
mechanics.

• The theory of probability is the basis of statistical mechan-
ics.

• The entropy of an ideal classical gas of distinguishable
particles is not extensive.

• The entropy of an ideal classical gas of distinguishable
particles is extensive.

• The properties of macroscopic classical systems with dis-
tinguishable and indistinguishable particles are different.

• The properties of macroscopic classical systems with dis-
tinguishable and indistinguishable particles are the same.

• The entropy of a classical ideal gas of distinguishable par-
ticles is not additive.

• The entropy of a classical ideal gas of distinguishable par-
ticles is additive.

• Boltzmann defined the entropy of a classical system by the
logarithm of a volume in phase space.

• Boltzmann did not define the entropy by the logarithm of a
volume in phase space.

• The symbol W in the equation S=k log W, which is in-
scribed on Boltzmann’s tombstone, refers to a volume in
phase space.

• The symbol W in the equation S=k log W, which is in-
scribed on Boltzmann’s tombstone, refers to the German
word “Wahrscheinlichkeit” !probability".

• The entropy should be defined in terms of the properties of
an isolated system.

• The entropy should be defined in terms of the properties of
a composite system.

• Thermodynamics is only valid in the “thermodynamic
limit,” that is, in the limit of infinite system size.

• Thermodynamics is valid for finite systems.
• Extensivity is essential to thermodynamics.
• Extensivity is not essential to thermodynamics.

This remarkable diversity of opinion has an interesting
consequence. When people discuss the foundations of statis-
tical mechanics, the justification of thermodynamics, or the
meaning of entropy, they tend to assume that the basic prin-
ciples they hold are shared by others. These principles often
go unspoken, because they are regarded as obvious. It has
occurred to me that it might be good to restart the discussion
of these issues by stating basic assumptions clearly and ex-
plicitly, no matter how obvious they might seem. This paper
is a start in that direction.

There are two possible reactions to the principles I put
forward. A reader might agree with them. In that case, we
would have a firm basis on which to proceed. Or, a reader
might take issue with one or more. In that case, we would
know where the conflict lies, which would give us a good
chance of resolving points of disagreement. In either case,
we should be able to make progress toward arriving at a
consensus, which is the goal of this paper.

Because my topic is limited to macroscopic measurements
of macroscopic systems, I will discuss what I understand
those terms to mean in Sec. II. In this paper I will put for-
ward 12 principles based on the concept of macroscopic
measurements that have led me to advocate the use of Bolt-
zmann’s 1877 definition of the entropy11 over other defini-
tions that are often found in textbooks.

II. MACROSCOPIC SYSTEMS

In this paper I am concerned with the question of how to
describe the observed behavior of macroscopic systems. The
concept of macroscopic frames all of my arguments, so it is
important to make clear at the outset how I define it. A mac-
roscopic system contains a large number of particles, and a
macroscopic measurement is limited in its resolution. These
two features are closely related, in that what can be regarded
as a large number depends on the resolution of the macro-
scopic measurements.

The reason for specifying a large number of particles is
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that the quantities of interest in thermodynamics are collec-
tive variables, such as the energy or the number of particles
in a system. The relative statistical fluctuations of such quan-
tities are generally inversely proportional to the square root
of the number of particles. If the statistical fluctuations are
much smaller than the resolution of the macroscopic mea-
surements, they can be ignored; the average values obtained
from statistical mechanics then give a description of the ex-
pected results of the experiment.

In the late 19th century, when Boltzmann and Gibbs did
their seminal work, the existence of atoms had not been
proven. The idea of experimentally observing atomic behav-
ior was scarcely considered. Now, it is possible to obtain
images of microscopic structure with atomic resolution. Nev-
ertheless, I am restricting my attention in this paper to mac-
roscopic measurements that cannot discern microscopic be-
havior in order to discuss the emergence of a thermodynamic
description from statistical mechanics.

In the remainder of the paper I will give the rationale for
each of the principles I have followed, and I will show how
they lead to the adoption of Boltzmann’s 1877 definition of
the entropy in terms of the logarithm of the probability of
macroscopic states for a composite system.

III. PROBABILITY OF MACROSCOPIC STATES

Principle 1: Probability theory is necessary for a theoret-
ical description of macroscopic behavior.

The first—and most fundamental—principle is that the ba-
sis for obtaining a description of a macroscopic system from
microscopic laws of motion is given by probability theory. In
any experiment !real or gedanken", the system is in some
specific microscopic state !quantum or classical" at any given
instant. That microscopic state is a property of the system,
independent of measurement.

The most immediate consequence of the limited resolution
of macroscopic measurements is that it severely restricts our
knowledge of the microscopic state of a system. We cannot
determine the microscopic state experimentally—we can
only eliminate microscopic states that are not consistent with
our macroscopic observations.

The limitations on our knowledge bring us to the distinc-
tion between reality and our knowledge of reality. The reality
is the microscopic state of the system at any given time. Our
knowledge of reality consists of the information we obtain
from macroscopic measurements and the conclusions we are
able to draw from that information. We can only construct a
representation or description of the behavior of the system;
we cannot know the microscopic state of a system from mac-
roscopic measurements.

In quantum systems our knowledge is even more limited.
For example, except for eigenstates, which have probability
zero, the energy is not even determined uniquely by the mi-
croscopic state, so it cannot be a property of the system
independent of measurement.

The most useful method I know for describing limited
knowledge is Bayesian probability theory,9 which led me to
the first principle.

After deciding to use probability theory, there remains the
choice of which probability distribution to use. The most
reasonable choice would seem to be the simplest that is con-
sistent with what we know from macroscopic observations.
Therefore, I take the probability distribution !a Baysian prior
or model probability" to be uniform in phase space for iso-

lated classical systems !subject to constraints on the total
energy and the restriction of the particles to certain volumes",
and correspondingly uniform over microscopic states of
quantum systems. The logical consequences of such prob-
ability distributions are known to lead to predictions that
agree with experiment, which is comforting.

Principle 2: Probability theory is sufficient for a theoreti-
cal description of macroscopic states.

In one sense, the introduction of probability distributions
very nearly completes the theory of many-body systems.
Little else is essential. The concepts of entropy, free energy,
etc. are extremely convenient, but they are not absolutely
necessary. We could calculate anything and everything about
the behavior of macroscopic systems without ever mention-
ing them.

This principle is very important because it implies that
however we define concepts like entropy and free energy in
statistical mechanics, the consequences of the definitions
must be consistent with the predictions of probability theory
if they are to have the properties required by thermodynam-
ics.

IV. COMPOSITE SYSTEMS

Principle 3: Statistical mechanics and thermodynamics
must predict the properties of composite systems.

An essential part of statistical mechanics and thermody-
namics is the analysis and prediction of the behavior of com-
posite systems. A simple isolated system in equilibrium does
not do anything macroscopically measurable. You can’t even
make an experimental determination of its temperature with-
out putting a thermometer in contact with it, and then you
have a composite system.

A simple container full of gas must also be regarded as a
composite system if we want to investigate questions such as
whether the density of the gas is uniform. Without concep-
tually dividing the system into smaller subsystems, we can-
not discuss density variations.

An important feature of a composite system is that it can
have internal constraints between its subsystems. The release
of internal constraints can lead to measurable changes, which
can be predicted by statistical mechanics and thermodynam-
ics.

Although I don’t expect serious disagreement on this prin-
ciple, it does lead to a different emphasis than the usual
textbook discussion. It is common to define thermodynamic
functions for isolated systems and only much later consider
equilibrium in composite systems. I believe that because of
the crucial importance of composite systems, they should
play a leading role in the development of statistical mechan-
ics and thermodynamics.

Section V will discuss the measurement of extensive pa-
rameters, which are quantities that are proportional to how
much of something there is in a system. Examples include
the energy and the number of particles. The prediction of the
measured values of extensive parameters is a key step in
linking statistical mechanics to thermodynamics.

V. PREDICTIONS OF THERMODYNAMIC
QUANTITIES

Principle 4: The values of extensive parameters that maxi-
mize the probability predict the results of measurements of
those parameters for composite systems in equilibrium.
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This principle provides the key link between statistical
mechanics and thermodynamic measurements.

When a constraint in a composite system is released, mea-
surable quantities can change. As an example, consider a
composite system consisting of two subvolumes separated by
a partition, each containing some amount of the same type of
ideal gas. Each subvolume contains on the order of 1020

particles, and our measurement apparatus can resolve the
density of the gas to an accuracy of about 10−5. If a hole is
punched in the partition, the density of the gas in each sub-
volume will go to approximately the same value, within fluc-
tuations of the order of 10−10. Because the fluctuations are
much smaller than the resolution of our measurement appa-
ratus, we can take the location of the maximum of the prob-
ability distribution to predict the experimental outcome. This
feature strongly supports Principle 2; probability theory is
sufficient to predict macroscopic behavior.

Similar examples can be given for releasing constraints on
the energy !using walls that conduct heat" or volume !using a
freely moving piston to separate the subvolumes". In each
case the probability distribution is very narrow, so that the
fluctuations cannot be observed by macroscopic measure-
ments. The extremely small relative fluctuations of macro-
scopic observables are so universal that, in the 19th century,
many of Boltzmann’s opponents didn’t believe in their exis-
tence.

Although nonequilibrium behavior after the release of
constraints is both interesting and important, the discussion
here is limited to equilibrium states, which are discussed in
Sec. VI.

VI. EQUILIBRIUM

Principle 5: A macroscopic equilibrium state is defined by
two properties: the probability of macroscopically observ-
able changes is extremely small, and there is no macroscopi-
cally observable flux of energy or particles. !This property
distinguishes equilibrium from steady state."

There might be some disagreement on this point. There is
a substantial literature in statistical mechanics that makes the
fundamental assertion that equilibrium is defined by a par-
ticular “equilibrium probability distribution” in phase space
!or Hilbert space".

In my opinion, such a view is a serious error, primarily
because the probability distribution of the microscopic states
is not macroscopically observable. We use probability theory
because we cannot discern microscopic states; we certainly
cannot measure the relative frequency with which they occur.

If we limit the definition of equilibrium to behavior that
can be observed, it follows that there are many probability
distributions that all make the same predictions.10 The sim-
plest probability distribution is the uniform distribution, but
it is not unique.

It is traditional to define a number of thermodynamic func-
tions to facilitate the analysis of macroscopic systems in
equilibrium. Although Principle 2 implies that these func-
tions are not absolutely necessary, they are such convenient
descriptions of macroscopic behavior that it would be unrea-
sonable to do without them. Their general nature is discussed
in Sec. VII.

VII. THERMODYNAMIC PREDICTIONS

Principle 6: The predictions of statistical mechanics and
thermodynamics are representations or descriptions of a sys-
tem based on the extent of our knowledge.

This principle again reflects the distinction between reality
and our knowledge of reality, between properties of a system
and a description or representation of measurable quantities
based on our limited knowledge.

As an example of this distinction, consider again a com-
posite system consisting of a box containing a gas, with a
partition dividing the box into two equal subvolumes. The
partition has a small hole in it, so that molecules of the gas
can move between the two subvolumes. At any instant of
time, there is some specific number of particles on each side
of the partition. Thermodynamics predicts a number of par-
ticles that give the same density on both sides of the parti-
tion. The predicted number turns out to agree with experi-
ment to within the limited resolution of macroscopic
measurements. For this reason, thermodynamics provides a
very useful description of the behavior of a macroscopic sys-
tem.

In contrast, the actual number of particles on each side of
the partition at any instant cannot be the number that is pre-
dicted. The actual number is not determined for quantum
systems without measurement, and even for classical sys-
tems, it fluctuates with time. The predicted number is a de-
scription based on our knowledge and is constant in time. It
is very useful for human purposes, but it is not a real prop-
erty of the system.

It is sometimes claimed that the predicted number of mol-
ecules in each subvolume is a real property of the system if
we regard it as an average over the course of an experiment.
How long would the observation time have to be for such a
claim to be true? Consider an open system with about 1020

particles in equilibrium and a corresponding statistical uncer-
tainty of about 1010 particles. To reduce the statistical uncer-
tainty of the mean to about one particle, we would need at
least 1020 independent observations. If the correlation time
for the system is about 1 ms, this would take 1017 s, which is
comparable to the age of the universe. Even with such a long
observation time, we would still not have an exact result
because the average number of particles is generally not an
integer. For any reasonable experiment during the lifetime of
a physicist, the prediction of thermodynamics is in error by
an enormous number of particles and should not be confused
with the actual number of particles.

For the same reasons, the energy, the entropy, and the
associated free energies are thermodynamic descriptions
rather than real properties of a macroscopic system. The en-
tropy is actually defined at a higher level of abstraction than
the energy or the number of particles. That is the subject of
Sec. VIII.

The distinction between real properties of a system and
our knowledge of the system might seem philosophical and a
bit pedantic, but it greatly clarifies some issues that might
otherwise be rather puzzling.

VIII. ENTROPY

This section considers the controversial question of what
“entropy” means and how to define it. Principle 7 is based on
the most important of the thermodynamic properties of the
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entropy,2,12 which leads to both the thermodynamic condi-
tions for equilibrium and the second law of thermodynamics.

Principle 7: The primary property of the entropy is that it
is maximized in equilibrium.

Because the macroscopically observable behavior of an
isolated system in equilibrium does not change with time, the
maximization of the entropy cannot be applied to a simple
system. It can be applied to a composite system: simply re-
lease a constraint and see what happens. If the definition of
the entropy is correct, the location of the maximum of the
entropy should predict the observed equilibrium values of
extensive macroscopic observables.

Principle 7 also leads directly to the second law of ther-
modynamics. If the entropy is always maximized in equilib-
rium for a composite system, then the change in entropy after
a constraint is released cannot be negative.

If we compare Principle 7 with the predictions of probabil-
ity theory, we see that the location of the maximum of the
entropy must always coincide with the location of the maxi-
mum of the probability distribution.

An immediate consequence of Boltzmann’s 1877 defini-
tion of the entropy as the logarithm of the probability distri-
bution for macroscopic observables is that the location of the
maximum of the entropy always coincides with the equilib-
rium values of those macroscopic observables. If any other
definition is used, it requires a separate demonstration to
show that it also predicts these values correctly.

The automatic agreement of the predictions of Boltz-
mann’s definition of the entropy with the correct equilibrium
values of macroscopic observables makes it the natural
choice. It might be possible to define the entropy differently,
but the predictions of any alternative definition must be iden-
tical to those of Boltzmann’s definition in terms of the loga-
rithm of the probability.

Principle 7 completes what I regard as a convincing argu-
ment in favor of Boltzmann’s 1877 definition of the entropy.

The remainder of the paper takes up issues that are asso-
ciated with the concept of entropy. Their purpose is both to
introduce the remaining principles that have guided my
thinking on these issues and to complete the picture pre-
sented so far.

IX. ADDITIVITY

Principle 8: Additivity is essential to any consistent defi-
nition of the entropy of a system with short-ranged interac-
tions between its particles.

In thermodynamics it is generally assumed that the en-
tropy of a composite system is given by the sum of the
entropies of the subsystems. This property is known as “ad-
ditivity.”

For Boltzmann’s 1877 definition of the entropy, the valid-
ity of the assumption of additivity is based on the short range
of molecular interactions, which is much smaller than the
dimensions of the system. Only a very small fraction of the
particles in one subsystem interact with those in another sub-
system, so that the sum of all such interaction energies is still
relatively small. If the direct interactions between sub-
systems can be neglected, the entropy satisfies additivity.

As an aside, using Boltzmann’s definition of the entropy
suggests the alternative of referring to this property as “sepa-
rability,” because the entropy of a composite system is de-
fined first.

If we were to use a definition of the entropy that did not
satisfy additivity and nevertheless wanted to have correct
results for composite systems, we could assign an arbitrary
function—or simply the value zero—as the entropy of any
subsystem. The entropy of a composite system could then be
obtained by adding an extra term to recover the Boltzmann
expression. It is possible to create such a formalism, but
none of the usual expressions for temperature, pressure, or
chemical potential in terms of partial derivatives of the en-
tropy would be necessarily valid. Without additivity, we
would not have thermodynamics as we know it.

The importance of additivity probably would go without
saying if it were not for a suggestion that an otherwise in-
correct definition of the entropy might be saved by an extra
term for composite systems.8 I don’t see any virtue to such a
procedure, and I stand by Principle 8.

X. THE THERMODYNAMIC LIMIT

The thermodynamic limit is defined as the infinite-size
limit of the ratios of extensive quantities—ratios such as the
energy per particle U /N or the particle density N /V. The
advantage of taking the limit of infinite size is that uncertain-
ties in these ratios go to zero because the relative fluctuations
are generally proportional to 1 /%N.

Principle 9: The thermodynamic limit is not required for
the validity of thermodynamics.

To judge from some textbooks, this principle might be the
most controversial of the ones discussed in this paper.

However, the thermodynamic limit is misnamed. It is not
essential to the foundations of thermodynamics. It cannot be
essential if we are to apply thermodynamics to real systems,
which are necessarily finite. We never do experiments on
infinite systems. If thermodynamics worked only for infinite
systems, it might still be interesting as mathematics, but it
would be irrelevant as science.

The thermodynamic limit is mathematically convenient
for certain problems. Phase transitions, for example, only
exhibit nonanalytic behavior in the thermodynamic limit,
which makes for a much cleaner mathematical description.
Nevertheless, the thermodynamic limit should not play any
essential role in the foundations of statistical mechanics and
thermodynamics.

XI. DISTINGUISHABILITY AND
INDISTINGUISHABILITY

Principle 10: “Indistinguishability” is a property of micro-
scopic states. It does not depend on experimental resolution.

In my opinion, this principle should be an obvious conse-
quence of the definitions found in any textbook on quantum
mechanics. However, I have had enough arguments about it
to know that it is far from obvious.

The definitions of distinguishability and indistinguishabil-
ity are simple: !1" If the exchange of two particles in a sys-
tem results in a different microscopic state, the particles are
distinguishable. !2" If the exchange of two particles in a sys-
tem results in the original microscopic state, the particles are
indistinguishable. !For fermions, two states are usually re-
garded as identical if they differ only by an overall minus
sign."

The definition of indistinguishability does not have any-
thing to do with the interactions between particles. It is pos-
sible in either quantum or classical physics for two distinct
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states to have the same energy. Nevertheless, if the micro-
scopic state is different after the exchange of two particles,
those particles are distinguishable.

Unfortunately, “distinguishable” is sometimes confused
with what might be called “observably different.” Two par-
ticles are observably different if exchanging them alters the
properties of the system in a way that is observable. Clearly,
if particles are observably different, they must be distin-
guishable. In contrast, particles can be distinguishable with-
out their exchange producing any observable differences.

A simple example of this distinction is provided by a mix-
ture of 3He and 4He. It would not be possible for a macro-
scopic measurement to detect the difference in the micro-
scopic states that would result from exchanging a single 3He
atom with a single 4He atom. Nevertheless, there would be a
difference in the microscopic states, and the two isotopes of
helium are not mutually indistinguishable.

The term “identical particles” is often used as a synonym
for indistinguishable particles. This use has the unfortunate
consequence that a model of classical distinguishable par-
ticles with identical properties might be mistaken for a model
of indistinguishable particles.

The concept of indistinguishability is foreign to classical
mechanics. Consider the trajectory of an isolated classical
system in phase space !the 6N-dimensional space defined by
the positions and momenta of all particles in the system" in
which the microscopic state is described by a point. If two
particles are exchanged at a given time, the trajectory be-
comes discontinuous. The exchange of particles has resulted
in a different microscopic state, regardless of whether the
Hamiltonian gives the same energy for the two microstates.

In quantum mechanics N-particle states of indistinguish-
able particles are characterized by a wave function that has
been symmetrized !or antisymmetrized" by summing over all
permutations of the particles, with a change in sign for each
permutation for fermions, or without a change in sign for
bosons.

A classical system of indistinguishable particles can be
described by the same procedure. The microscopic state of a
classical system of indistinguishable particles would be de-
scribed by the N! points in phase space found from the set of
all permutations of the particles. The trajectory !or trajecto-
ries" of the set of N! points is clearly unaffected by the ex-
change of any two particles at any point in time.

The idea of representing a classical state by N! points in
phase space is a bit odd, but that is because indistinguish-
ability is not a classical concept. However, if indistinguish-
ability is to be imposed on a classical system, this represen-
tation seems to be the most reasonable way of doing it.

Many textbooks claim that classical systems with distin-
guishable and indistinguishable particles are described by
different expressions for the entropy. However, it is straight-
forward to demonstrate that the macroscopic properties of a
classical system are exactly the same whether the particles
are distinguishable or indistinguishable.2 Since the macro-
scopic behaviors of classical systems with distinguishable
and indistinguishable particles are the same, it seems natural
that their entropies should also be the same, which leads to
my next principle.

Principle 11: Systems with identical macroscopic proper-
ties should be described by the same entropy.

Boltzmann’s 1877 definition of the entropy gives the same
expression for the entropy for classical systems with either

distinguishable or indistinguishable particles.2 The tradi-
tional definition in terms of a volume in phase space, which
is often erroneously attributed to Boltzmann,5 gives different
expressions, at least one of which must clearly be incorrect.
The worst failings of the traditional definition of the entropy
for a system of distinguishable particles are that it violates
the second law of thermodynamics and makes incorrect pre-
dictions for equilibrium with respect to the exchange of par-
ticles between subsystems.2

The error in the traditional definition of the entropy of a
classical system of distinguishable particles also has the con-
sequence that it predicts that the entropy of an ideal gas is
not extensive. This problem is not really fundamental, but it
has bothered people. And it leads to the next principle.

XII. EXTENSIVITY

Principle 12: Extensivity is not essential to thermodynam-
ics.

Extensivity is the property that the macroscopic observ-
ables of a system are all directly proportional to its size. This
property implies that ratios, such as U /N, V /N, and S /N, are
all independent of the size of the system. In many textbooks,
extensivity is taken to be a fundamental postulate of
thermodynamics.12 It is certainly convenient mathematically,
because it leads directly to the Euler and Gibbs–Duhem
equations. It is an appropriate assumption when the physical
properties of a material are being investigated, and the sur-
face or interface contributions can be neglected.

However, real systems have surfaces and interfaces, which
are important topics of research. Because the surface-to-
volume ratio changes with the size of the system, real sys-
tems are not extensive, and the deviations from extensivity
can be very important. For example, a real gas in a real
container will usually be adsorbed to some extent on the
inner walls of the container. At low temperatures, the fraction
of adsorbed molecules can be quite large, which is exploited
in the construction of cryopumps.

To describe the thermodynamics of a surface, we must be
able to describe the thermodynamics of a nonextensive sys-
tem and extract the parts of the free energy, etc. that are not
directly proportional to the size. Therefore, statistical me-
chanics and thermodynamics must be applicable to nonex-
tensive systems.

Recognizing that extensivity is not an essential property of
thermodynamic systems is important in deciding on an ap-
propriate definition of entropy. Some colleagues claim that a
definition of entropy that gives a demonstrably incorrect ex-
pression can be made acceptable by imposing extensivity
with an additional term of the form −kB ln!N!". However,
because thermodynamics should also correctly describe non-
extensive systems, that is, systems with entropies that cannot
be made extensive by a term that depends only on N, such a
correction is not feasible.

There is also another difficulty in trying to impose exten-
sivity on the fundamental definition of the entropy. If the
system under consideration contains more than one kind of
particle, the criterion of extensivity is ambiguous. For ex-
ample, suppose we have a gas mixture of distinguishable
particles, with NA particles of type A and NB particles of type
B. The common textbook definition of the entropy as the
logarithm of a volume in phase space gives an answer that is
not extensive !and incorrect for other reasons2". We might try
to impose extensivity with the addition of either
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−kB ln!NA !NB!" or −kB ln#!NA+NB"!$. The first choice is the
one we want, of course, but the criterion of extensivity does
not eliminate the second. If this path were to be taken, at
least one more principle would have to be invoked to obtain
an unambiguous definition.

Although extensivity is a useful assumption when analyz-
ing the properties of a material, rather than a system with
surfaces, it is not essential to either thermodynamics or sta-
tistical mechanics, and should not be included as part of the
definition of entropy.

XIII. CONSEQUENCES OF THE 12 PRINCIPLES

The principles I have given have led me to the conclusion
that Boltzmann’s 1877 definition of the entropy as the loga-
rithm of the probability of macroscopic states for composite
systems is superior to any other proposed definition. In par-
ticular, it is superior to a definition in terms of a volume in
phase space that is often found in textbooks for classical
statistical mechanics.

If the principles I have presented in this paper are correct,
any other valid definition of entropy must turn out to be
equivalent to defining entropy in terms of probability.

XIV. GIBBS’ PARADOX

Alternatives to Boltzmann’s 1877 definition of the entropy
have led to problems that have been debated for over a hun-
dred years. The debate has centered on Gibbs’ paradox,
which refers to a set of old problems in statistical
mechanics.13 The two main problems concern the properties
of the entropy of systems of distinguishable particles. In my
opinion, they are both easy to resolve on the basis of the
principles I have given.

A. Extensivity

The first version of Gibbs’ paradox concerns the properties
of the entropy as defined in terms of the logarithm of a vol-
ume in phase space. Boltzmann’s 1877 definition in terms of
the logarithm of the probability of a composite system does
not have this problem.

If U is the energy, V is the volume, and N is the number of
particles, the volume in phase space !often denoted by !"
consists of all points for which N particles are in a container
of volume V with a total energy less than or equal to U. For
an ideal gas, this volume is given by

! = VN "3N/2

#!3N/2 + 1"
U3N/2. !1"

If the entropy is defined in terms of the logarithm of this
volume in phase space,

S! = k ln ! , !2"

Stirling’s approximation gives an expression for the entropy
of the form

S!!U,V,N" = NkB&3
2

ln'U

N
( + ln V + ln X) , !3"

where X is a constant that can be calculated from Eq. !1".
This expression for the entropy, Eq. !3", is not extensive.

As explained in Sec. XII, I do not regard the lack of exten-

sivity as a problem in itself. However, Eq. !3" leads to a
violation of the second law of thermodynamics.6 That is a
problem!

Consider an ideal gas of N particles in a volume V, and
assume that the entropy before inserting the partition is given
by Eq. !3". Now insert a partition that divides the system into
two equal volumes. The total entropy after inserting the par-
tition is given by twice the entropy of a system half the size
of the original one,

2S!!U/2,V/2,N/2"

= 2
N

2
kB&3

2
ln'U/2

N/2( + ln'V

2
( + ln X) . !4"

The change in S! is

$S! = 2S!!U/2,V/2,N/2" − S!!U,V,N" = − NkB ln 2. !5"

The decrease in entropy predicted by the entropy in Eq. !3"
violates the second law of thermodynamics as expressed in
the Clausius inequality,14

$S % *
i

f !Q

T
, !6"

where i and f refer to the initial and final macroscopic states,
before and after inserting the partition. Because !Q=0 while
the partition is being inserted, the Clausius inequality is vio-
lated by Eq. !5". This violation eliminates a definition of the
entropy in terms of the logarithm of a volume in phase space
from consideration as the entropy of a classical gas.6

Boltzmann’s definition of entropy in terms of the loga-
rithm of the probability gives exactly the same result for
classical particles whether they are distinguishable or not,2

SB!U,V,N" = NkB&3
2

ln'U

N
( + ln'V

N
( + ln X) . !7"

Because Eq. !7" for the entropy does not violate the second
law of thermodynamics, there is no paradox and no problem.

B. Continuity

Another problem, which is also known as Gibbs’ paradox,
concerns the desire for continuity as the interactions between
particles in a system go continuously from being measurably
different to being the same for all particles.

For example, consider a classical ideal gas with NA par-
ticles of type A and NB particles of type B. All particles of a
given type have the same properties, but these properties are
different for type A and type B particles. The entropy of this
system differs from the entropy of an ideal gas of N=NA
+NB particles of a single kind by the amount

$S = − kB&NA ln'NA

N
( + NB ln'NB

N
() & 0. !8"

Equation !8" is the well-known entropy of mixing.
The concern is that as the differences in the properties of

the two types of particles vanish, the entropy of the system
changes discontinuously by the entropy of mixing given in
Eq. !8".

First of all, it is quite possible for the interactions between
particles to be essentially identical, but to still be able to
separate them in some way—using differences in diffusion
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rates for different isotopes, for example. In that case, the
entropy would not change discontinuously as the differences
in the interactions vanish.

However, suppose all differences in interactions, masses,
etc. could be made to go continuously to zero. At some point,
the differences would become smaller than the resolution of
our experiments. Nevertheless, at any level of difference in
the interactions, we either would or would not be able to
measure the difference.

If the entropy were a property of the system !reality"—
instead of a description of the system !representation of our
knowledge", as argued in Sec. VII—a discontinuity of the
entropy would be strange. However, the entropy is given by
the probability, which is, in turn, related to our knowledge of
the system. There is no problem with our description !or
knowledge" of a system changing discontinuously when our
information changes discontinuously. If we cannot determine
experimentally that there are two different types of particles,
then a description that lumps them together will still be cor-
rect. Common practice lumps the various isotopes of an ele-
ment together for most thermodynamic applications. Al-
though different isotopes are clearly distinguishable, the
macroscopic predictions are not affected.

The problem of continuity is often expressed in terms of a
continuous change from distinguishable to indistinguishable
particles. However, such a change is intrinsically discontinu-
ous and does not occur simply because the interactions be-
tween the particles become identical.

XV. SUMMARY

I have put forward 12 principles that have led me to con-
clude that Boltzmann’s 1877 definition of the entropy in
terms of the logarithm of the probability of macroscopic
states of composite systems is superior to all other options.

It would be too much to hope that my arguments will find
universal agreement. However, I hope that further discus-
sions will be clarified by an improved understanding of one
point of view. Those who might have different points of view
have the opportunity to express which of the principles they
object to and present their own alternatives.

The issues I have discussed have been the subject of dis-
agreements for well over a century. It might be that, in the

end, the conclusions of the scientific community deviate
from the principles I have listed here. However, the purpose
of this paper will be fulfilled if it paves the way to a final
consensus.
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