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Although glasses are disordered and complex systems, we show that important characteristics of the
glass transition, such as a negative measured specific heat in the transition region, can be understood
using a simple model of thermally activated hopping in a two-level system. The dynamics of the
heating of a nonequilibrium state is modeled by a master equation. The calculation illustrates the
connection between equilibrium and nonequilibrium, in particular, the determination of transition
rates using the principle of detailed balance. © 2005 American Association of Physics Teachers.
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I. INTRODUCTION

The dynamics of systems far from equilibrium is impor-
tant in many situations in physics, chemistry, and biology.
Some systems, such as glasses, exist indefinitely in a non-
equilibrium state. Also of interest is nonequilibrium steady
states, which occur when a stationary flux is driven by an
external field.

The master equation is an important tool for understanding
systems in nonequilibrium.1 Zia, Praestgaard, and
Mouritsen2 recently provided an introduction to the master
equation and remarked on the appearance of a negative spe-
cific heat in certain model systems. Their model is a three-
level system that is maintained in a nonequilibrium steady
state driven by two thermal baths at different temperatures.
In this paper we apply the master equation to a simpler,
two-level system and discuss the behavior of the dynamic
heat capacity when the system is heated from a quenched
state. This process occurs in real systems and is the main
experimental method of probing the properties of the glass
transition with differential scanning calorimetry.

A ‘‘glass’’ refers to systems that have some degrees of
freedom which fluctuate at a rate that depends strongly on
temperature and pressure, and become so slow at low tem-
perature or high pressure that the fluctuations become frozen
during ordinary time scales.3 Upon cooling, many viscous
liquids become solid-like, but neither crystallization nor long
range ordering occurs. This liquid to solid transformation
goes through a glass transition region where the liquid
changes its properties to an out-of-equilibrium solid-like
state.3 The glass transition is common in quite different and
important classes of materials !for example, polymers, ox-
ides, chalcogenides, metals, and molecular solids",4,5 and
continues to attract much attention from a fundamental and a
practical point of view.6

A useful way to think about the glass transition is based on
the energy landscape of the liquid.7,8 In a viscous liquid the
atomic mobility is sufficiently high so that the system is able
to sample different configurations of the energy landscape.
The structure rearranges rapidly in response to changes of
temperature and pressure. However, when the temperature is
sufficiently low, atomic reorganization becomes too slow and
near the glass transition temperature, Tg , the system is
trapped in a local free energy minimum characterized by an
energy greater than the equilibrium crystalline state. Below
the glass transition structural rearrangements are kinetically

arrested, and the response of the system to changes in tem-
perature does not contain contributions from all of the con-
figurational degrees of freedom. In short, a glass is a liquid
that has lost its ability to flow.9

A negative heat capacity is common in a calorimetric heat-
ing scan through the glass transition. While changing the
temperature of the sample through the glass transition, the
heat capacity shows a step change from Cglass to that of the
liquid, C liquid , which is larger than Cglass due to the release of
the frozen configurations.3 That is, as the system is heated,
the heat capacity usually first decreases and then increases
with a pronounced spike before reaching its equilibrium
value of C liquid . The experimental behavior of B2O3 !a key
ingredient of Pyrex" is shown in Fig. 1!b", and the negative
feature is clearly observed at the faster cooling rate !bottom
curve", which induces the largest nonequilibrium behavior in
the glass. In Fig. 1 the heat capacity data are normalized so
that the heat capacity is the temperature derivative of the
fictive temperature !discussed in Sec. IV", and the change of
Cglass to C liquid is scaled to be from 0 to 1. The unnormalized
data for the same material are reported in Ref. 10. This nega-
tive feature has been discussed recently.11

The heat capacity is related to the mean square fluctuation
of the energy and is necessarily a positive quantity.12 How-
ever, we are concerned here with differential scanning calo-
rimetry measurements !sometimes termed the dynamic spe-
cific heat", which is given by C!(dE/dt)/(dT/dt). In this
case the temperature changes at a finite rate and the system
may or may not be in equilibrium.13 Odagaki et al.14 defined
the heat capacity as the ratio of the increase of the energy to
the temperature jump when the jump is infinitesimal. This
heat capacity depends on the observation time in nonequilib-
rium systems. For such systems it is necessary to consider
the time scale of the measurement, because the system has
uncompensated fluxes that induce changes of the macro-
scopic variables with time, in contrast to systems in thermo-
dynamic equilibrium. The existence of a negative heat ca-
pacitance might seem surprising, but the behavior of
nonequilibrium systems can be counterintuitive from the
point of view of equilibrium thermodynamics where the in-
ternal fluxes are strictly compensated.

A system is characterized by its density of states and the
occupancies of the states determine a configuration that oc-
curs with a certain probability. The master equation describes
the evolution of the system by giving the rate of change of
the configuration probabilities in terms of the rates of transi-

735 735Am. J. Phys. 73 !8", August 2005 http://aapt.org/ajp © 2005 American Association of Physics Teachers



tion from one configuration to another. The master equation
approach has been applied to the dynamic heat capacitance
of glasses,13 electron transport in amorphous
semiconductors15 and organic conductors,13 ion diffusion in
solids,16 transport coefficients near the critical point,17 and
models for autocatalytic chemical reaction.18

Methods that parametrize experimental heat capacity
curves usually require a complex analysis of the data to ac-
count for different aspects of structural relaxation.19 It is use-
ful to try to explain the major trends of experimental features
in terms of the simplest model glass. In the following we will
show that a negative specific heat can occur in a simple
two-level system by normal cooling-heating. This demon-
stration will illustrate the application of the master equation
to a system in nonequilibrium. We also will point out other

characteristics of glass relaxation that can be understood with
this simple model, such as aging and the use of the fictive
temperature to describe nonequilibrium states.

II. TWO-LEVEL SYSTEM EQUILIBRIUM
PROPERTIES

In a two-level system, particles exhibit thermally activated
transitions between two states separated by an energy barrier
!see Fig. 2". In equilibrium the forward and backward tran-
sitions occur at the same rate. However, at low temperatures
the time scale of the transition rates becomes longer than the
cooling rate, and the transitions become rare, so that the sys-
tem falls out of equilibrium. This picture reproduces the ba-
sic features of the kinetic arrest that occurs at the glass tran-
sition by the slowing down of relaxation modes involving
diffusive motion and structural rearrangements. A two-level
system has been applied to the residual energy of glasses
after being slowly cooled to T!0 K,20 and is the basis for
more complex and realistic models that consider cooperative
phenomena21,22 or intrabasin relaxation.11 In addition, two-
level systems have been used to describe differential scan-
ning calorimetry results for biological processes such as the
unfolding of proteins.23,24

In the two-level model sketched in Fig. 2, the bottoms of
the potential wells differ by the energy E1"E0!% , and the
height of the barrier between the two minima is &0!Es
"E0 from configuration 0 and &1!Es"E1 from configura-
tion 1, where Es is the energy at the top of the barrier !saddle
point" and %!&0"&1 . The two configurations are occupied
with probabilities f 0 and f 1 with f 0# f 1!1. We set the ori-
gin of energy at the bottom of the lowest state, so that the
Boltzmann factors at temperature T are 1 and e"%/kBT, where
kB is Boltzmann’s constant. The equilibrium distribution
shown in Fig. 3!a" is

f 0e!
1

1#e"%/kBT
, !1"

f 1e!
1

1#e#%/kBT
. !2"

The energy of the system,

'E!T "(! f 1% , !3"

is shown in Fig. 3!b" as a function of temperature. The equi-
librium heat capacity C!d'E(/dT!%d f 1e /dT is

Fig. 1. !a" Fictive temperature versus temperature and !b" a plot of dT f /dT
versus the ambient temperature for Br2O3 at a heating rate 10 K min"1

following cooling through the transition region at the three cooling rates
shown in K min"1. The points are experimental heating curves. The solid
lines are calculated for best-fit parameter values from a model for nonexpo-
nential and nonlinear structural relaxation !data from Ref. 19".

Fig. 2. Potential surface in a two-level system, indicating the transitions
over the barrier.
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C!T "!
%2

kBT2

e%/kBT

!1#e%/kBT"2
, !4"

and is shown in Fig. 3!c". Note that the heat capacity has a
large peak, a feature of an ensemble of two-state systems.

An important characteristic of glasses at helium tempera-
tures is the linear dependence of the equilibrium heat capac-
ity on temperature.25 This temperature dependence can be
explained by applying Eq. !4" over an energy distribution of
states, as shown in Refs. 14 and 26.

III. THE MASTER EQUATION AND TRANSITION
RATES

The master equation can be stated in terms of the loss-gain
of the probabilities of the separate states in the system. These
states are the result of a coarse graining procedure, and thus
each state involves an average over a large number of micro-
scopic degrees of freedom.27 Because it is not usually pos-
sible to determine the transition rates from basic principles,
they are stated with the aid of the principle of detailed bal-
ance. Detailed balance implies that the distribution of prob-
abilities governed by the master equation must reduce to the
equilibrium distribution in an unbiased steady state. Detailed
balance also requires that the frequencies of the forward and

backward transitions between a pair of states be equal in
equilibrium. This requirement implies that the ratio of prob-
abilities for a transition and its reverse is given by the Bolt-
zmann factor of the energy difference.28 It is commonly as-
sumed that the same rates can be used for the dynamics of
local transitions in nonequilibrium situations.

The master equation gives the rate of variation of f 1 in
terms of the frequencies at which particles enter and leave a
state:2,22

d f 1

dt
!w01f 0"w10f 1 . !5"

There is a similar equation for f 0 which changes as d f 0 /dt
!"d f 1 /dt . The quantity wi j is the probability of a transi-
tion per unit time from state i to state j !the transition rate".
To determine the form of the transition probabilities wi j , we
note that the stationary solution of Eq. !5" must correspond
to the equilibrium distribution, which implies that wi j must
satisfy

w01

w10
!

f 1e

f 0e
!e"%/kBT. !6"

Equation !6" is the detailed balance condition. Only the ratio
of the transition probabilities wi j is specified, so there is
considerable freedom to choose their form for a particular
system.

In the simplest approach the transition rates are assumed
to take the form wi j!)0*(Ei ,E j), where v0 is a frequency
that gives the time scale of the transitions and * is a function
of the energies that satisfies

*!Ei ,E j"!e"!E j"Ei"/kBT*!E j ,Ei", !7"

so that detailed balance is obeyed. We will use the Arrhenius
form of the rates, in which the probability of a transition is
determined by the height of the barrier. This form is widely
used for chemical reactions29 and ion hopping in solids,30

and can be justified from transition state theory, which as-
serts that the probability of a transition is proportional to the
concentration of the ‘‘activated complex’’ at the saddle point
of the potential surface. Therefore

*!Ei ,E j"!e"!Es"Ei"/kBT. !8"

For the system of Fig. 2 we obtain

w01!)0e"&0 /kBT, w10!)0e"&1 /kBT. !9"

It is interesting to consider other forms of the transition
rates. For example, the Miller-Abrahams rate31 is applicable
to electron tunneling between defects in solids, and has the
same form as the standard Metropolis rate32 often used in
Monte Carlo simulations. A similar approach forms the basis
for the Shockley-Read-Hall model33 of the recombination at
defects in semiconductors. These transition probabilities are
given by *(Ei ,E j)!1 if E j$Ei , else e"(E j"Ei)/kBT, so that
downward transitions occur with probability one. This rate is
asymmetric. In other forms, the rate is symmetric, and the
energy barrier for jumping is raised or lowered by half the
energy change on hopping,

*!Ei ,E j"!e"!E j"Ei"/2kBT. !10"

Equation !10" is characteristic of hopping events that depend
on thermal fluctuations of the environment of the particle, as
in polaronic diffusion.34

Fig. 3. Equilibrium distribution as a function of temperature of a two-level
system with %!2%T , &0!10%T , &1!8%T , and +!10"6 s. The thermal
energy at room temperature is %T!0.026 eV. !a" Occupancies, !b" total
energy, !c" heat capacity, and !d" transition rates.
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Note that both transition rates in Eq. !9" decrease for de-
creasing temperature, as shown in Fig. 3!d", which is an
important requirement for the glass transition, because struc-
tural fluctuations become frozen at low temperatures. In con-
trast, Eq. !10" does not fulfill this requirement, because if one
of the rates decreases at lower temperature, the other in-
creases. For the Miller-Abrahams rate, the downward pro-
cess is temperature independent.

IV. RELAXATION AND AGING

Equation !1" can be written as a function of f 1 as

d f 1

dt
!"!w01#w10" f 1#w01 . !11"

Equations !9" and !11" constitute a complete kinetic model
for the two-level system. The effect of the thermal bath en-
ters the model through the transition probabilities. To de-
scribe a particular nonequilibrium process, it is necessary to
determine an initial condition and the external perturbations
on the system. If the system starts from a nonequilibrium
configuration and is not perturbed, it will tend irreversibly to
equilibrium. It is convenient to write Eq. !6" as

f 1e!
w01

w01#w10
. !12"

Hence we may express Eq. !11" in the form

d f 1

dt
!"!w01#w10"! f 1" f 1e". !13"

The use of the equilibrium occupancy, f 1e(T), in Eq. !13",
which is applied far from equilibrium, is purely formal. The
alternative formulation of Eq. !1" in Eq. !13" shows that the
rate of relaxation of f 1 is proportional to the extent of the
departure from equilibrium, f 1" f 1e .

The transition rates wi j are defined only as a function of
the instantaneous temperature. Hence Eq. !12" lets us express
f 1e(T) as a function of wi j(T). It is important to recognize
that the transition probabilities assume quasi-equilibrium,
that is, their form is not affected by the system being out of
equilibrium. One goal of recent research is to determine
more general criteria that will specify the transition rates far
from equilibrium.35

From Eq. !13" it follows that if the system is kept at con-
stant temperature, f 1 will decay to its equilibrium value ex-
ponentially with time, with the relaxation time22

+!
1

w01#w10
. !14"

How can we prepare a nonequilibrium initial state? We
have already mentioned that a main characteristic of glasses
is that they are out of equilibrium and are obtained by cool-
ing the viscous melt rapidly. Consider the two-level system
whose equilibrium properties are shown in Fig. 3. The sys-
tem is quenched rapidly from the initial temperature Ta to
the final temperature Tb , which must be chosen so that
+(Tb) is larger than available observation times. That is, if
we cool the system from Ta at a rate dT/dt!"b to tem-
peratures below Tg , the remaining time of cooling will be
much less than the time to overcome the barrier, b"1Tg
%+ .36 As a result, the equilibrium distribution corresponding
to Tg is ‘‘frozen’’ on experimentally accessible time scales,

and the system is in nonequilibrium in which the occupation
of the higher level is significantly enhanced. The two-level
system becomes a glass.

At the glass transition temperature, Tg , the system departs
from equilibrium during cooling. The glass transition is not a
thermodynamic phase transition that is sharply defined at a
certain temperature. The transition from solid to liquid oc-
curs over a range of temperatures, and this range depends on
the time of observation. One definition of Tg is when the
viscosity !and hence the relaxation time" exceeds a certain
value, 1012 Pa s, but this definition is not convenient for all
glass materials. Due to the simplicity of detection of the
glass transition by calorimetry techniques, a generally ac-
cepted criterion for determining Tg is that it is the tempera-
ture at which the specific heat takes on its average value
between Cglass and C liquid .3

By quenching, the system at 50 K, say, may be in the
configuration that it would have had in equilibrium at 150 K.
This remark suggests a useful way of describing the nonequi-
librium state of the system, which is given by the fictive
temperature,37 T f , defined as the temperature at which the
nonequilibrium value of a property would be the equilibrium
one, that is,

f 1e!T f "! f 1!T ". !15"

Because a two-level system has a single degree of freedom,
the fictive temperature uniquely characterizes any nonequi-
librium state.22 In real glasses, all nonequilibrium states need
not coincide with an equilibrium state,37 but nonetheless T f
is widely used as a measure of the departure of the macro-
scopic properties from equilibrium.19,38,39

At temperatures that are not too much below Tg , the re-
laxation time +(T) is not too long, and the glass with T f
&T will relax to equilibrium T f!T . This change in a glass
by slow relaxation below Tg is known as aging.

V. NONEQUILIBRIUM DYNAMICS AND NEGATIVE
HEAT CAPACITY

Another important class of nonequilibrium processes con-
sists of externally driving a system either in steady-state or in
time-varying situations. Reference 2 discusses an example
where heat flow is maintained by having two transition rates
coupled to different baths. The model of Fröhlich for ion
hopping in solids adapts the Debye model for dipole relax-
ation to hopping between localized states.30 In this case the
external force is an electrical field that modifies asymmetri-
cally the energies of the two-level system, and consequently
the height of the barrier seen from each state, so that the
transition rates of Eq. !9" depend on the electric field.30

We apply to the two-level system the usual scanning calo-
rimetry method, that is, we increase the temperature of the
quenched system and measure the heat release. The increase
of temperature affects the transition rates, producing changes
in occupation and energy, which can be calculated by inte-
gration of the master equation.

Our starting point is a two-level system with the fictive
temperature T f!130 K obtained by quenching the system
from a high temperature to a low temperature Tb . If we
apply a constant heating rate b!dT/dt , the evolution of the
concentration as a function of temperature is determined
from Eq. !13":
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d f 1

dT
!"

1
b+!T "

! f 1" f 1e". !16"

Note that we have removed the time dependence in Eq. !16",
because the differential scanning calorimetry results are re-
ported as a function of temperature. The experimental time
scale is described in Eq. !16" through the parameter b. Equa-
tion !16" can be readily integrated numerically. The results
are shown in Fig. 4 at two different heating rates to illustrate
that the kinetic behavior of a glass depends strongly on the
observation time scale. The total energy % f 1 and the heat
capacity that is obtained by multiplying Eq. !16" by % are
shown.

When the system is heated according to T(t)!Tb#bt , at
some time the temperature-dependent relaxation time +(T)
becomes smaller than the accessible observation time, but
T(t) is still below Tg . Hence, the system begins to relax by
depopulating the higher energy level, and we observe that
'E(t)( decreases, at least over some time interval, giving rise
to the negative heat capacity in Fig. 4!b". The reason is that
the two-level system glass at 100 K, with T f!130 K, has a
higher concentration in the upper state than it should at equi-
librium. Thus, once the heat bath activates the transitions, the
dominant transitions are from the high to low energy state
!1→0", with the consequent decrease of energy despite the
increase of temperature. Eventually, 'E(t)( begins to in-
crease again when T(t) becomes sufficiently high.

Another way to look at this is to observe in Fig. 4!a" that
while the temperature increases the energy relaxes to the
equilibrium curve. We discuss this dependence with refer-
ence to the circled numbers in Fig. 4!a". In the first stage ,1-
there is no change of energy at all because the transition rates

are very small at these low temperatures. Then ,2- as men-
tioned before the energy decreases, and it does so following
the shortest path to the equilibrium curve in a relaxation
process. Note that this feature is much stronger for the slow
heating rate, in which the system has longer time to relax to
equilibrium while its temperature increases. The intersection
with the equilibrium curve ,3- is at zero slope according to
Eq. !16", and this intersection is the point where the heat
capacity becomes positive. When at ,3- the energy surpasses
the equilibrium curve it bends rapidly ,4- toward the equilib-
rium line, producing the positive spike of the heat capacity.
Thereafter ,5- the energy values begin to converge to the
equilibrium curve. At high temperature ,6- the relaxation rate
becomes comparable to or faster than the heating rate, and
'E(t)( follows the ‘‘equilibrium’’ energy corresponding to
the temperature T(t).

Differential scanning calorimetry curves qualitatively
similar to those in Fig. 4!b" are widely observed experimen-
tally. As remarked, the measured heat capacitance shows the
transition between the equilibrium values Cglass , to that of
the liquid, C liquid . Both these specific heats are equilibrium
thermodynamic quantities, as Cglass is well defined as an or-
dinary specific heat. !Glasses and crystalline forms of the
same substance have essentially the same heat capacity,
which in each case is vibrational in origin.21" As we have
discussed, the measured C in the transition region is not the
equilibrium specific heat. The transition region contains im-
portant information on kinetic quantities, such as the activa-
tion energy of the internal transitions that govern the trans-
formation from solid to liquid. These kinetic parameters can
be extracted from differential scanning calorimetry results
with the aid of phenomenological models.19,40

Finally, we express the results in terms of the fictive tem-
perature. According to Eq. !15" we have

f 1!
1

1#e#%/kBT f
. !17"

If we take the derivative of Eq. !17" with respect to the
temperature, we obtain

dT f

dT
!

%

C!T f "

d f 1

dT
, !18"

where C is defined in Eq. !4". The low and high temperature
limits of Eq. !18" can be inferred readily: dT f /dT varies
from 0 to 1, because in the glass T f is constant, while in
equilibrium T f!T . Hence dT f /dT is an alternative expres-
sion for the heat capacity that removes the equilibrium de-
pendence on temperature and highlights the features of the
transition region from glass to viscous liquid.

Our results for the two heating rates of the two-level sys-
tem are plotted in terms of T f in Fig. 5. By comparing Figs.
5 and 1 !which was reported in terms of T f), it is seen that
the simple two-level model glass displays semi-
quantitatively the physical features of real glasses.

Real glasses are not completely described by an ensemble
of independent two-level systems. The coupling of the dif-
ferent relaxing units gives rise to nonlinear and nonexponen-
tial relaxation that are universally observed in glassy sys-
tems. For example, we have remarked that in our model T f
first decreases because T f changes toward equilibrium and
then intersects the equilibrium curve at zero temperature gra-
dient #see Fig. 5!a"$. In contrast, in real glasses the evolution

Fig. 4. !a" Energy of the two-level system versus temperature at two heating
rates, starting from a quenched state with a fictive temperature of 130 K.
The numbered arrows indicate the stages of evolution of energy as discussed
in the text. !b" Heat capacity versus ambient temperature for the two-level
system at two heating rates. The curves indicate the equilibrium quantities of
Fig. 3.
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of T f during heating ‘‘neglects the equilibrium curve,’’ as
remarked in Ref. 38; that is, it first decreases, but then bends
upward before arriving at the equilibrium curve so that the
intersection shows a positive slope #see, for example, Fig.
1!a"$. This behavior is a manifestation of the memory effect,
which is ubiquitous in glasses and whose description re-
quires at least a distribution of relaxation times in the inter-
nal relaxing units.41 Due to this memory effect, the negative
heat capacity feature is less marked in experiments than in
the two-level model, for which the positive overshoot is
larger.

It is difficult to account for the various and common fea-
tures of glass relaxation in terms of microscopic models,
given the wide variety of structural and chemical character-
istics of the materials in which they are observed. This sub-
ject is of current research interest.6,9 An extension of the
two-level system including cooperative relaxation effects
which makes the model much closer to the properties of real
glasses is given in Ref. 22.

VI. SUMMARY

Although glasses are highly disordered and complex sys-
tems where strong dynamic changes take place as the tem-
perature is varied, a simple two-level model displays impor-
tant experimental characteristics of the glass transition. The
internal dynamics of the system is regulated by the transition
rates, which depend on the temperature of the thermal bath.
When the system starts at a long-lived nonequilibrium state
at low temperature, it can lose energy while it is ‘‘heated.’’
The dynamic behavior depends on the interplay between the
system’s relaxation time and the experimental time scale of
observation. Our simple analysis shows that the master equa-
tion is an important tool for describing physical systems that
depart strongly from thermodynamic equilibrium.
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