Computational Material Science

$$
\begin{aligned}
& \text { Gonzalo Gutiérrez } \\
& \text { Departament of Prysics } \\
& \text { Universidad de Chile. }
\end{aligned}
$$

gonzalo@fisica.ciencias.uchile.cl
http://fisica.ciencias.uchile.cl/~gonzalo

Outline

1. Introduction

- Simulation of Materials
- Characteristic lengths and times in materials
- Adiabatic approximation

2. Electronics Structure Calculation ($\mathrm{T}=0 \mathrm{~K}$)

- Density Functional Theory (DFT), Hohenberg-Kohn Theo.
- Kohn-Sham Eqs., Local Density Approximation (LDA)
-Example: alumina

3. Moving the atoms
-Classical MD

- Ab-initio MD
- Example: germania

4. Conclusions

Ce^{58}	$\begin{gathered} 59 \\ \mathrm{Pr}^{59} \end{gathered}$	$\begin{gathered} 60 \\ \mathrm{Nd} \end{gathered}$	$\begin{array}{r} 61 \\ \hline \mathrm{Pm} \\ \hline \end{array}$	$\begin{array}{r} 62 \\ S_{m} \end{array}$	Ea^{63}	$\begin{gathered} 64 \\ \mathrm{Gd} \end{gathered}$	Tb^{65}	$\begin{gathered} 66 \\ D y \end{gathered}$	${ }^{67}$	Er^{68}	Tm	Yb	${ }^{71}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	3	Cf	Es	T	Y ${ }^{\text {d }}$		

| Metales | Metales | Metales de
 alcalinos terreos | transición |
| :--- | :--- | :--- | :--- |\quad| Metales de |
| :--- |
| tierras raras |

Computer simulation

Space and time in materials

gg/FIU,August 04
Depto. of Physics, U. of Chile

Splitting different characteristics time

- Equation of the system

$$
H|\Psi\rangle=E|\Psi\rangle
$$

- Solid state physics hamiltonian:

$$
\left(T_{\text {ion }}+T_{e}+V_{e-e}+V_{e-i o n}+V_{\text {ion-ion }}\right) \Psi\left(r_{1}, \ldots, r_{N} ; R_{1}, \ldots, R_{M}\right)=E \Psi\left(r_{1}, \ldots r_{N} ; R_{1}, \ldots, R_{M}\right)
$$

- Adiabatic approximation: splitting of the ionics and electronics degree of freedom

$$
\mathrm{M}_{\mathrm{ion}} \sim 2000-10000 \mathrm{~m}_{\mathrm{e}} \Rightarrow \tau_{\mathrm{ion}} \gg \tau_{\mathrm{e}}
$$

- Writing $\Psi(r ; R)=\Phi(r) \chi(\mathrm{R})$, the problem split in two parts:
$\vec{\int}\left(T_{e}+V_{e-e}+V_{e-i o n}+V_{\text {ionion }}\right) \Phi\left(r_{1}, . . r_{N} ;\{R\}\right)=\varepsilon(\{R\}) \Phi\left(r_{1}, . . r_{N} ;\{R\}\right)$

$$
\text { ion } \quad \Longleftrightarrow\left(T_{i o n}+\varepsilon(\{R\})\right) \chi(R)=E \chi(R)
$$

Electrons and ions

$$
\text { Electrons }\left(T_{e}+V_{e-e}+V_{e-i o n}+V_{\text {ion-ion }}\right) \Phi\left(r_{1}, \ldots r_{N} ;\{R\}\right)=\boldsymbol{\varepsilon}(\{R\}) \Phi\left(r_{1}, \ldots r_{N} ;\{R\}\right)
$$

- knowing $\boldsymbol{\varepsilon}(\boldsymbol{R})$ we can have:
-Ground state ($\mathrm{T}=0$)
-Crystalline structure and PV diagram
-Elastic, optics, magnetics, etc, properties
-Potential energy surface -Interatomic potential \Rightarrow interatomic forces

Iones

$$
\left(T_{i o n}+\varepsilon(\{R\})\right) \chi(R)=E^{\prime} \chi(R)
$$

This is a quantum problem, but classical physics work pretty well!

- to look for an effective interatomic potential $\boldsymbol{\varepsilon}(\boldsymbol{R})$
- to treat the ions as classical particles, i.e. obeying Newton Laws

Electrons : solution of the Schrödinger Eq.

- Hamiltonian of a many electrons system:

$$
\left(\sum_{j=1}^{N}-\frac{\hbar^{2}}{2 m} \nabla_{j}^{2}+V_{e-e}+V_{e x t}\right) \Phi\left(\vec{r}_{1}, . ., \vec{r}_{N}\right)=E \Phi\left(\vec{r}_{1}, . ., \vec{r}_{N}\right)
$$

- To look for the GS by means of a variational method:

$$
E_{0}\left[\Phi_{0}\right]=\operatorname{Min}_{\tilde{\Phi}}\langle\tilde{\Phi}| H|\tilde{\Phi}\rangle
$$

$$
\tilde{\Phi}\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right) \quad \text { 3N dimensions trial function }
$$

- Approximate Methods : one electron selfconsistent equations Hartree: $\quad \Phi\left(\vec{r}_{1}, . ., \vec{r}_{N}\right)=\phi_{1} \ldots . \phi_{N}$

$$
\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}-\frac{Z}{r}+\int \frac{n\left(r^{\prime}\right)}{\left|r-r^{\prime}\right|} d r^{\prime}\right) \phi_{i}=\varepsilon_{i} \phi_{i}, \text { con } n(r)=\sum_{i}\left|\phi_{i}\right|^{2}
$$

Hartree-Fock: $\quad \Phi\left(\vec{r}_{1}, . ., \vec{r}_{N}\right)=\frac{1}{\sqrt{N}} \operatorname{det}\left[\phi_{1} \ldots \phi_{N i}\right]$

Density Functional Theory

The electronic density $n(r)$ as the basic variable
Hohenberg-Kohn (1964):

1. The external potential $v(r)$ is totally determined from the electronic density $n(r)$.

$$
E[n]=\int n(r) v(r) d r+T[n]+V_{e-e}[n]
$$

2. For the trial density $\tilde{n}(r)$ we obtain $E_{0} \leq E[\tilde{n}]$
N.B. a) We had a 3 N variables trial function $\Phi\left(\mathrm{r}_{1} . \mathrm{r}_{\mathrm{N}}\right)$, but now only a 3 variables trial function $\tilde{n}(r)$
b) DFT gives a strict formulación of the search of the GS from the electronic density $\tilde{n}(r)$.
For example, Thomas-Fermi can be derived from DFT.

Electrons II: Kohn-Sham Eqs.

- Total energy reads as (Kohn \& Sham, 1965)

$$
\mathrm{E}_{\{R\}}[\tilde{n}]=T_{s}[\tilde{n}]+E_{\text {Hartree }}[\tilde{n}]+E_{\text {ext }}[\tilde{n}]+E_{x c}[\tilde{n}]
$$

-Minimization of $\mathrm{E}_{\{R\}}[\tilde{n}]$ is equivalent to solve

Kohn-Sham Eqs.

Selfconsistent solution

$$
\left\{\begin{array}{l}
{\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+v_{e f f}(\vec{r})\right] \varphi_{i}(\vec{r})=\varepsilon_{i} \varphi_{i}(\vec{r})} \\
v_{e f f}=\int \frac{n\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d \vec{r}^{\prime}+V_{e x t}(\vec{r})+v_{x c}(\vec{r}) \\
n(\vec{r})=\sum_{i=1}^{N}\left|\varphi_{i}(\vec{r})\right|^{2}
\end{array}\right.
$$

- LDA approximation: $E_{x c}[n] \approx \int n(\vec{r}) \varepsilon_{x c}(n(\vec{r})) d \vec{r}$

$$
\text { with } \quad \varepsilon_{x c}=-\frac{0.458}{r_{s}}-\frac{0.44}{r_{s}+7.8}
$$

Electrones III: implementation

Implementation: selfconsistent cycle

Technical issues

-Input: crystalline structure, atomic numbers
-Accuracy in energy, in forces
-Full potential calculation:

- FPLAPW (Wien2k),
- FPLMTO
-Pseudopotential calculation
-PPPW method (VASP, CPMD, ABINIT)
-Other expansion: Gaussian, SIESTA

Example: $\mathrm{Al}_{2} \mathrm{O}_{3}$

Importance:

-ceramic material important both in geosciences and technology
-many technological applications, because
extreme hardness, high melting point, low electrical conductivity.

Structural phase transitions:

$$
\begin{gathered}
\text { liquid } \rightarrow \gamma \rightarrow \delta, \theta \rightarrow \alpha \text {-alumina } \\
\text { amorphous(a.o) } \rightarrow \gamma \rightarrow \theta \rightarrow \alpha \text {-alumina }
\end{gathered}
$$

Transition aluminas are used as adsorbents, catalysts or catalyst support, coatings, etc, because of their fine particle size, high surface and catalytic activities of their surfaces.

$\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$

Ref: G. Gutiérrez et al: -PRB 65, 012101 (2002)
 -to be submitted (2004)

α and $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ are the most common phases, but the structure of g is still unknown.
-Aluminum surface oxidize in the atmosphere, forming oxide films.
Also, one can make a surface treatment to aluminum by anodic oxidation.
-How is the structure of such films?
-Are they amorphous-like, or they have a γ structure, as has been suggested because the low coordination that present Al atoms at the surface?
-The first step to answer these question is to determine the bulk $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ structure

$\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$: structure

- Defective spinel: cubic unit cell

32 O in a fcc array, and 211/3 Al , placed in tetra- and octahedral positions at random. described by

$$
[]_{2 \frac{2}{3}} \mathrm{Al}_{21 \frac{1}{3}} \mathrm{O}_{32}
$$

-This formula is deduced from the figure. An integer number of Al atoms is obtained if one enlarges this unit cell three times: 160 at $=\rrbracket_{8} \mathrm{Al}_{64} \mathrm{O}_{96}$

These Al vacancies occupy octahedral or tetrahedral cation sites?
In what proportion?

Unit cell of the spinel $\mathrm{MgAl}_{2} \mathrm{O}_{4}$: 56 atoms: 8 Mg in tetra, 16 Al in octahedral, and 32 O in fcc position.

Situation so far

- Experiments: neutron, electron and x-ray diffraction has led to conflicting conclusions:
-vacancies situated entirely in tetrahedral positions
octahedral
both, 63:37
-Theoretical works: not conclusive results either.
-MD and MC 64\% of vacancies in thetrahedral sites
-Empirical pair pot+ab-initio, MD ('g9): vacancies in octahedral positions.

Searching for the minimum energy structure

Total energies for a large number of configurations consistent with the crystallographic specifications need to be calculated
Two main ways:

1) In most MD simulations, authors have increased the unit cell
2) to consider as a tolerable stoichiometric approximation a unit cell with 56at=21 Al + 32 O.
-Our approach: reduction of the unit cell -Instead of considering a cubic unit cell, one can consider a primitive cell with less particles!
Noting that $\left([]_{8} \mathrm{Al}_{64} \mathrm{O}_{96}\right) / 4=[]_{2} \mathrm{Al}_{16} \mathrm{O}_{24}$ only 40 atoms - In order to have it
-perfect spinel, $\mathrm{Al}_{3} \mathrm{O}_{4}$, has 56 at., so the primitive has 14 at. Increase by three, remove 2 Al , and you get $\mathrm{Al}_{2} \mathrm{O}_{3}$

-There are two Al vacancies, which can be both tetrahedral, both octahedral, or one tetra and one octa.
-There are only 153 configurations for Al vacancies (in comparison to 10^{10} for the 160 at. unit cell).

Method

After a detailed structural analysis of the 153 configurations, one get only 14 non-equivalent config: 4 OO, 6 TO and 4 TT.
-We performed total-energy calculations for all these 14 configurations, allowing for relaxation.

Method: ab-initio total energy calculation
DFT within LDA and exchange-correlation functional of Ceperley and Alder Plane wave pseudopotentials code (VASP) Kinetic energy cutoff Ecut at 400 eV .,
Two kind of k-point sampling, resulting two kind calculation
Low accuracy: only the g point, converged to $0.03 \mathrm{eV} /(f 0 r m u l a ~ u n i t) ~$
High accuracy, using a (3x3x9) k-point mesh, $0.004 \mathrm{eV} /($ formula unit)

Total energy results

Total energy for the 14
minimum configurationsss50

$\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$:total energy curve

Bulk modulus: 219 GPa

Density of states

gg/FIU,August 04
Depto. of Physics, U. of Chile

Moving the atoms

-IDEA: atoms "are" classical particles, they follow Newton laws
Interatomic potential $\mathrm{V}(\mathrm{r}) \quad F=-\nabla V\left(r_{1}, \ldots, r_{N}\right)$
Temperature : equipartition theorem $T=\left\langle m v^{2} / 3 k\right\rangle$
-Numerical solution of the coupled ordinary differential equations
-Results: $r_{1}(t), \ldots, r_{N}(t) ; v_{1}(t), \ldots, v_{N}(t)$
-Physical properties: average over configurations, like in statistical mechanics

Molecular Dynamic program

Interatomic potentials

A general expresion for an interatomic potential should contains one-body, two body, three body,...and N body terms

$$
V=\sum_{i=1}^{N} v_{1}\left(\vec{r}_{i}\right)+\sum_{i=1}^{N} \sum_{i \neq j}^{N} v_{2}\left(\vec{r}_{i}, \vec{r}_{j}\right)+\sum_{i=1}^{N} \sum_{i \neq j}^{N} \sum_{i \neq j \neq k}^{N} v_{3}\left(\vec{r}_{i}, \vec{r}_{j}, \vec{r}_{k}\right)+\ldots \ldots .
$$

For simplicity, people in general use only two and three body terms.
The idea is to write a general functional form and to fit it according some experimental data: elastic constants, vacancy energy, etc.

Simple interatomic potential

Ex: Lennard-J ones potential: good for noble gases

$$
\Phi\left(r_{i j}\right)=4 \varepsilon\left[\left(\frac{\sigma}{r_{i j}}\right)^{12}-\left(\frac{\sigma}{r_{i j}}\right)^{6}\right]
$$

Interatomic potential II

A good interatomic potential should have the following properties

- FLEXI BI LITY

2. PRECISION
3. TRANSFERABILITY
4. COMPUTATI ONAL EFFI CI ENCY

Time discretization

$$
\left\{\begin{array}{l}
\vec{r}_{i}(t+\Delta)=\vec{r}_{i}(t)+\vec{v}_{i}(t) \Delta+\frac{1}{2} \vec{a}_{i}(t) \Delta^{2} \\
\vec{v}_{i}(t+\Delta)=\vec{v}_{i}(t)+\frac{\vec{a}_{i}(t)+\vec{a}_{i}(t+\Delta)}{2} \Delta
\end{array} \vec{a}_{i}=-\frac{1}{m_{i}} \frac{\partial V}{\partial \vec{r}_{i}}\right.
$$

Time stepping: Velocity Verlet algorithm
Given $\quad\left(\vec{r}_{i}(t), \vec{v}_{i}(t)\right)$

1. Compute $\vec{a}_{i}(t)$ as a function of $\left\{\vec{r}_{i}(t)\right\}$
2. $\quad \vec{v}_{i}\left(t+\frac{\Delta}{n}\right) \leftarrow \vec{v}_{i}(t)+\frac{\Delta}{n} \vec{a}_{i}(t)$
3. $\quad \vec{r}_{i}(t+\Delta) \leftarrow \vec{r}_{i}(t)+\vec{v}_{i}\left(t+\frac{\Delta}{2}\right) \Delta$
4. Compute $\vec{a}_{i}(t+\Delta)$ as a function of $\left\{\vec{r}_{i}(t+\Delta)\right\}$
5. $\vec{v}_{i}(t+\Delta) \leftarrow \vec{v}_{i}\left(t+\frac{\Delta}{2}\right)+\frac{\Delta}{2} \vec{a}_{i}(t+\Delta)$

Physical Properties

Structural properties: pair distribution function $g(r)$ static strucuture factor $S(q)$
Thermodynamics properties $\mathrm{pV}=\mathrm{NkT}+\mathrm{W}$ heat capacity

Dynamical properties diffusion coeficient D Velocity autorrelation function $\operatorname{VACF}(\mathrm{t})$ Vibrational density of states $D(w)$

Amorphous $\mathrm{Al}_{2} \mathrm{O}_{3}$: results I

Pair distribucion function

Coordination number

- Al-O distance: $1.76 \AA$ (exp. $=1.8 \AA$)
- Coord. Nr: Al-O: 4.25, O-Al:2.83 (cutoff: 2.2 Å) Ref: G. Gutiérrez et al: PRB 65, 104202 (2002)

Amorphous $\mathrm{Al}_{2} \mathrm{O}_{3}$: angle distributions

Summary:

-Short range order consists of AlO_{4} tetrahedra.
-there are 3 - and 4 -fold rings, with planar 2- and 3-fold ring.

Structural trasformation of amorphous $\mathrm{Al}_{2} \mathrm{O}_{3}$ under pressure

- In the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ system (important in geoscience and ceramic) present a both a Si and Al coordination change, from tetrahedral to octahedral Coordination under pressure bajo.
In SiO_{2} that change is wellknown. What does it happen in alumina?
- Phase transformation in liquid and amorphous material: poli-amorphysm

Observed in: $\mathrm{H}_{2} \mathrm{O}!$!
$\mathrm{SiO}_{2}, \mathrm{GeO}_{2}, \mathrm{P}$,
$\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{Y}_{2} \mathrm{O}_{3}$
gg/FIU,August 04

Amorphous $\mathrm{Al}_{2} \mathrm{O}_{3}$ under pressure: results

Ref: G. Gutiérrez, Submitted (2004)

$\mathrm{Al}_{2} \mathrm{O}_{3}$ under pressure II

Angular distribution

Coordination of Al changes according density \Rightarrow OK exp.

- a-a transformation in alumina: coord $4 \rightarrow$ coord. 6
- according our simulation, it does happen at pressure 15-25 Gpa.

Ions + electrons: ab-initio MD

The only interaction there exists is the Coulomb interactions!
The idea of ab-initio MD is to calcul everything from the solid state hamiltonian

1. Electronic structure calculation to obtain the total energy $e(R)$ in terms of the positions of the ions.
2. Forces for each Δt, forces are obtained from the electronic str. calc.

$$
\begin{aligned}
F_{I} & =-\frac{\partial}{\partial R_{I}} \varepsilon(\{R\})=-\frac{\partial}{\partial R_{I}} E_{K S}\left(\left\{\varphi_{i}\right\},\left\{R_{i}\right\}\right) \Rightarrow \\
& =-\frac{\partial}{\partial R_{I}} \sum_{i}\left\langle\varphi_{i}\right| H_{K S}\left|\varphi_{i}\right\rangle=-\sum_{i}\left\langle\varphi_{i}\right| \frac{\partial}{\partial R_{I}} H_{K S}\left|\varphi_{i}\right\rangle
\end{aligned}
$$

Amorphous $\mathrm{Al}_{2} \mathrm{O}_{3}$: DM ab-initio

Preliminary Results
Ref: S. Davis \& G. Gutiérrez, in progress

Pair distribution functions

Electronic Density of states

Detalles: Codigo VASP, 10 ps, $600 \mathrm{~K}, 80$ at., (NVT), solo punto Γ, $5 \mathrm{~min} /$ paso.

