

Computational Material Science

Gonzalo Gutiérrez Departament of Physics Universidad de Chile.

gonzalo@fisica.ciencias.uchile.cl http://fisica.ciencias.uchile.cl/~gonzalo

Outline

1. Introduction

- Simulation of Materials
- Characteristic lengths and times in materials
- Adiabatic approximation

2. Electronics Structure Calculation (T=0 K)

- Density Functional Theory (DFT), Hohenberg-Kohn Theo.
- Kohn-Sham Eqs., Local Density Approximation (LDA)
- -Example: alumina

3. Moving the atoms

- -Classical MD
- Ab-initio MD
- Example: germania
- 4. Conclusions

H		Tabla Periódica de los													2 He		
Li ³	Be ⁴	Elementos									B 5	C ⁶	7 Z	0 8	9 F	10 Ne	
л Na	12 Mg	£									13 Al	14 Si	15 P	16 S	- - 	18 Ar	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	.38 Sr	Y ³⁹	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	\mathbf{Ag}^{47}	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun								

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	\mathbf{Pm}	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	- 99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	\mathbf{Fm}	Md	No	Lr

gg/FIU,August 04

Computer simulation

Space and time in materials

Splitting different characteristics time

- Equation of the system $H|\Psi\rangle = E|\Psi\rangle$
- Solid state physics hamiltonian:

 $(T_{ion} + T_e + V_{e-e} + V_{e-ion} + V_{ion-ion}) \Psi(r_1, \dots, r_N; R_1, \dots, R_M) = E \Psi(r_1, \dots, r_N; R_1, \dots, R_M)$

 Adiabatic approximation: splitting of the ionics and electronics degree of freedom

$${
m M}_{
m ion}$$
 ~2000-10000 ${
m m}_{
m e}$ \implies ${
m au}_{
m ion}$ >> ${
m au}_{
m e}$

• Writing $\Psi(r;R) = \Phi(r) \chi(R)$, the problem split in two parts:

$$(T_e + V_{e-e} + V_{e-ion} + V_{ion-ion}) \Phi(r_1, ..., r_N; \{R\}) = e(\{R\}) \Phi(r_1, ..., r_N; \{R\})$$

electron

on
$$(T_{ion} + \boldsymbol{e}(\{R\}))\boldsymbol{c}(R) = E \boldsymbol{c}(R)$$

gg/FIU,August 04

Electrons and ions

Electrons $(T_e + V_{e-e} + V_{e-ion} + V_{ion-ion}) \Phi(r_1, ..., r_N; \{R\}) = e(\{R\}) \Phi(r_1, ..., r_N; \{R\})$ • **knowing** e(R) we can have: -Ground state (T=0)-Crystalline structure and PV diagram -Elastic, optics, magnetics, etc, properties -Potential energy surface -Interatomic potential \Rightarrow interatomic forces

lones

$$(T_{ion} + \boldsymbol{e}(\{R\}))\boldsymbol{c}(R) = E'\boldsymbol{c}(R)$$

This is a quantum problem, but classical physics work pretty well!

- to look for an effective interatomic potential **e**(**R**)

- to treat the ions as classical particles, i.e. obeying Newton Laws

Electrons : solution of the Schrödinger Eq.

Hamiltonian of a many electrons system:

$$\left(\sum_{j=1}^{N} -\frac{\hbar^2}{2m} \nabla_j^2 + V_{e-e} + V_{ext}\right) \Phi(\vec{r}_1, ..., \vec{r}_N) = E \Phi(\vec{r}_1, ..., \vec{r}_N)$$

•To look for the GS by means of a variational method: $E_0[\Phi_0] = \operatorname{Min}_{\widetilde{\Phi}} \langle \widetilde{\Phi} | H | \widetilde{\Phi} \rangle$

 $\tilde{\Phi}(\vec{r}_1,...,\vec{r}_N)$ 3N dimensions trial function

Approximate Methods : one electron selfconsistent equations

Hartree:
$$\Phi(\vec{r}_1,...,\vec{r}_N) = \mathbf{f}_1....\mathbf{f}_N$$

 $\left(-\frac{\hbar^2}{2m}\nabla^2 - \frac{Z}{r} + \int \frac{n(r')}{|r-r'|} dr'\right) \mathbf{f}_i = \mathbf{e}_i \mathbf{f}_i, \text{ con } n(r) = \sum_i |\mathbf{f}_i|^2$
Hartree-Fock: $\Phi(\vec{r}_1,...,\vec{r}_N) = \frac{1}{\sqrt{N}} \det[\mathbf{f}_1....\mathbf{f}_{N_i}]$

gg/FIU,August 04

Density Functional Theory

The electronic density n(r) as the basic variable

Hohenberg-Kohn (1964):

1. The external potential v(r) is totally determined from the electronic density n(r).

 $E[n] = \int n(r)v(r)dr + T[n] + V_{e-e}[n]$

2. For the trial density $\tilde{n}(r)$ we obtain $E_0 \leq E[\tilde{n}]$

N.B. a) We had a 3N variables trial function Φ(r₁..r_N), but now only a 3 variables trial function ñ(r)
b) DFT gives a strict formulación of the search of the GS from the electronic density ñ(r).
For example, Thomas-Fermi can be derived from DFT.

• Total energy reads as (Kohn & Sham, 1965)

$$\mathbf{E}_{\{R\}}[\tilde{n}] = T_{s}[\tilde{n}] + E_{Hartree}[\tilde{n}] + E_{ext}[\tilde{n}] + E_{xc}[\tilde{n}]$$

•Minimization of $\mathbf{E}_{\{R\}}[\tilde{n}]$ is equivalent to solve

gg/FIU,August 04

Electrones III: implementation

Implementation: selfconsistent cycle

gg/FIU,August 04

Technical issues

•Input: crystalline structure, atomic numbers

•Accuracy in energy, in forces

•Full potential calculation:

• FPLAPW (Wien2k),

• FPLMTO

Pseudopotential calculation

•PPPW method (VASP, CPMD, ABINIT) •Other expansion: Gaussian, SIESTA

Example: Al₂O₃

Importance:

-ceramic material important both in geosciences and technology

-many technological applications, because extreme hardness, high melting point, low electrical conductivity.

Structural phase transitions:

liquid $\rightarrow \gamma \rightarrow \delta$, $\theta \rightarrow \alpha$ -alumina amorphous(a.o) $\rightarrow \gamma \rightarrow \theta \rightarrow \alpha$ -alumina

Transition aluminas are used as adsorbents, catalysts or catalyst support, coatings, etc, because of their fine particle size, high surface and catalytic activities of their surfaces.

gg/FIU,August 04

Ref: G. Gutiérrez et al: -PRB 65, 012101 (2002) -to be submitted (2004)

 α and γ -Al₂O₃ are the most common phases, but the structure of g is still unknown.

•Aluminum surface oxidize in the atmosphere, forming oxide films. Also, one can make a surface treatment to aluminum by anodic oxidation.

•How is the structure of such films?

•Are they amorphous-like, or they have a γ structure, as has been suggested because the low coordination that present AI atoms at the surface?

•The first step to answer these question is to determine the bulk $\gamma\text{-Al}_2\text{O}_3$ structure

γ -Al₂O₃ : structure

• **Defective spinel**: cubic unit cell 32 O in a fcc array, and 211/3 AI , placed in tetra- and octahedral positions at random. described by $\left[\right]_{2\frac{2}{3}}Al_{21\frac{1}{3}}O_{32}$

•This formula is deduced from the figure. An integer number of AI atoms is obtained if one enlarges this unit cell three times: $160 \text{ at}=[]_8 \text{ AI}_{64} \text{ O}_{96}$

These Al vacancies occupy octahedral or tetrahedral cation sites? In what proportion?

Unit cell of the spinel MgAl₂O₄: 56 atoms: 8 Mg in tetra, 16 Al in octahedral, and 32 O in fcc position.

Situation so far

 Experiments: neutron, electron and x-ray diffraction has led to conflicting conclusions:
 vacancies situated entirely in tetrahedral positions octahedral both, 63:37

•Theoretical works: not conclusive results either.

•MD and MC 64% of vacancies in thetrahedral sites •Empirical pair pot+ab-initio, MD ('99): vacancies in octahedral positions.

Searching for the minimum energy structure

Total energies for a large number of configurations consistent with the crystallographic specifications need to be calculated

Two main ways:

1) In most MD simulations, authors have increased the unit cell

2) to consider as a tolerable stoichiometric approximation a unit cell with 56at=21 Al + 32 O

•Our approach: reduction of the unit cell

•Instead of considering a cubic unit cell, one can consider a primitive cell with less particles!

Noting that $([]_8AI_{64}O_{96})/4=[]_2AI_{16}O_{24}$ only 40 atoms •In order to have it

-perfect spinel, AI_3O_4 , has 56 at., so the primitive has 14

at. Increase by three, remove 2 AI, and you get AI_2O_3

•There are two AI vacancies, which can be both

tetrahedral, both octahedral, or one tetra and one octa.

•There are only 153 configurations for AI vacancies (in comparison to 10¹⁰ for the 160 at. unit cell).

Method

After a detailed structural analysis of the 153 configurations, one get only 14 non-equivalent config: 4 OO, 6 TO and 4 TT.

•We performed total-energy calculations for all these 14 configurations, allowing for relaxation.

Method: ab-initio total energy calculation DFT within LDA and exchange-correlation functional of Ceperley and Alder Plane wave pseudopotentials code (VASP) Kinetic energy cutoff Ecut at 400 eV., Two kind of k-point sampling, resulting two kind calculation Low accuracy: only the g point, converged to 0.03 eV/(formula unit) High accuracy, using a (3x3x9) k-point mesh, 0.004 eV/(formula unit)

Total energy results

γ -Al₂O₃ :total energy curve

Bulk modulus: 219 GPa

Density of states

gg/FIU,August 04

Depto. of Physics, U. of Chile

Moving the atoms

•IDEA: atoms "are" classical particles, they follow Newton laws

Interatomic potential V(r) $F = -\nabla V(r_1, ..., r_N)$

Temperature : equipartition theorem $T = \langle mv^2 / 3k \rangle$

•Numerical solution of the coupled ordinary differential equations

•**Results**: $r_1(t), ..., r_N(t); v_1(t), ..., v_N(t)$

•Physical properties: average over configurations, like in statistical mechanics

Molecular Dynamic program

Interatomic potentials

A general expression for an interatomic potential should contains one-body, two body, three body,...and N body terms

$$V = \sum_{i=1}^{N} v_1(\vec{r}_i) + \sum_{i=1}^{N} \sum_{i \neq j}^{N} v_2(\vec{r}_i, \vec{r}_j) + \sum_{i=1}^{N} \sum_{i \neq j}^{N} \sum_{i \neq j \neq k}^{N} v_3(\vec{r}_i, \vec{r}_j, \vec{r}_k) + \dots$$

For simplicity, people in general use only two and three body terms.

The idea is to write a general functional form and to fit it according some experimental data: elastic constants, vacancy energy, etc.

Simple interatomic potential

Ex: Lennard-Jones potential: good for noble gases

$$\Phi(r_{ij}) = 4\boldsymbol{e}\left[\left(\frac{\boldsymbol{s}}{r_{ij}}\right)^{12} - \left(\frac{\boldsymbol{s}}{r_{ij}}\right)^{6}\right]$$

gg/FIU,August 04

Interatomic potential II

A good interatomic potential should have the following properties

- FLEXIBILITY
- 2. PRECISION
- 3. TRANSFERABILITY
- 4. COMPUTATIONAL EFFICIENCY

DM algorithm

Time discretization

Time stepping: Velocity Verlet algorithm Given $(\vec{r}_i(t), \vec{v}_i(t))$ 1. Compute $\vec{a}_i(t)$ as a function of $\{\vec{r}_i(t)\}$ 2. $\vec{v}_i(t + \frac{\Delta}{2}) \leftarrow \vec{v}_i(t) + \frac{\Delta}{2} \vec{a}_i(t)$ 3. $\vec{r}_i(t + \Delta) \leftarrow \vec{r}_i(t) + \vec{v}_i(t + \frac{\Delta}{2})\Delta$ 4. Compute $\vec{a}_i(t + \Delta)$ as a function of $\{\vec{r}_i(t + \Delta)\}$ 5. $\vec{v}_i(t + \Delta) \leftarrow \vec{v}_i(t + \frac{\Delta}{2}) + \frac{\Delta}{2} \vec{a}_i(t + \Delta)$

gg/FIU,August 04

Physical Properties

Structural properties: pair distribution function g(r) static strucuture factor S(q)

Thermodynamics properties pV = NkT + Wheat capacity

Dynamical propertiesdiffusion coeficient DVelocity autorrelation function VACF(t)Vibrational density of states D(w)

Amorphous Al₂O₃ : results I

Al-O distance: 1.76 Å (exp.=1.8 Å)
Coord. Nr: Al-O: 4.25, O-Al:2.83 (cutoff: 2.2 Å) Ref: G. Gutiérrez et al: PRB 65, 104202 (2002)

gg/FIU,August 04

Amorphous Al₂O₃ : angle distributions

Summary:

-Short range order consists of AIO₄ tetrahedra.

-there are 3- and 4-fold rings, with planar 2- and 3-fold ring.

Structural trasformation of amorphous Al₂O₃ under pressure

• In the Al₂O₃-SiO₂ system (important in geoscience and ceramic) present a both a Si and Al coordination change, from tetrahedral to octahedral Coordination under pressure bajo.

In SiO₂ that change is wellknown. What does it happen in alumina?

Phase transformation in liquid and amorphous material:

poli-amorphysm

Observed in: H₂O!! SiO₂, GeO₂, P, $AI_{2}O_{3}-Y_{2}O_{3}$

32

gg/FIU,August 04

Amorphous Al₂O₃ **under pressure: results**

Ref: G. Gutiérrez, Submitted (2004)

gg/FIU,August 04

1

Angular distribution

Coordination of AI changes according density **P**OK exp.

- a-a transformation in alumina: coord 4 🐵 coord.6
- according our simulation, it does happen at pressure 15-25 Gpa.

lons + electrons: ab-initio MD

The only interaction there exists is the Coulomb interactions! The idea of ab-initio MD is to calcul everything from the solid state hamiltonian

- 1. Electronic structure calculation to obtain the total energy e(R) in terms of the positions of the ions.
- **2.** Forces for each Δt , forces are obtained from the electronic str. calc.

$$F_{I} = -\frac{\partial}{\partial R_{I}} \boldsymbol{e}(\{R\}) = -\frac{\partial}{\partial R_{I}} E_{KS}(\{\boldsymbol{j}_{i}\}, \{R_{i}\}) \Rightarrow$$
$$= -\frac{\partial}{\partial R_{I}} \sum_{i} \langle \boldsymbol{j}_{i} | H_{KS} | \boldsymbol{j}_{i} \rangle = -\sum_{i} \langle \boldsymbol{j}_{i} | \frac{\partial}{\partial R_{I}} H_{KS} | \boldsymbol{j}_{i} \rangle$$
$$\text{Teo.Hellman-Feynman}$$

Amorphous Al₂O₃ : **DM ab-initio**

Preliminary Results

Detalles: Codigo VASP, 10 ps, 600 K,80 at., (NVT), solo punto Γ , 5min/paso.