
Can an ideal gas feel the shape of its container?
Gonzalo Gutiérreza) and Julio M. Yáñezb)
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Thermodynamic quantities of an ideal gas enclosed in a finite container are examined. We use an
asymptotic expansion for high temperatures to obtain the partition function of an ideal gas, both in
two and three dimensions, showing the leading corrections to the internal energy due to a finite
container. In the three-dimensional case, the first correction term depends only on the area–volume
ratio, but higher order terms depend also on other geometric properties of the container. However,
according to recent results, we show that the answer to the question posed in the title is negative.
© 1997 American Association of Physics Teachers.
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I. INTRODUCTION

In this paper we are interested in examining how the th
modynamic properties of an ideal gas are influenced by
geometry of its container. Perhaps it is not evident, but
problem is closely related to the one formulated by M. K
as: ‘‘Can one hear the shape of a drum?’’1 Both problems
can be reduced to the study of the distribution and beha
of the eigenvalues of the Helmholtz equation,

¹2f~r !1lf~r !50, ~1!

with Dirichlet boundary conditions~f50 on the boundary!
over a domain of defined geometry.
Thermodynamic properties of an ideal gas can be

tracted from the partition function

Z5
zN

N!
, ~2!

whereN is the number of particles andz is

z5 (
$states%

exp~2bEn!, ~3!

with b5(kBT)
21, kB is Boltzmann’s constant, andT is the

absolute temperature. The eigenvalues~energy levels! of one
particle,En , are obtained from the stationary statesc(r ,t)
5f(r )e2 iEt/\ of the time-dependent Schro¨dinger equation,

2
\2

2m
¹2c1V~r !c5 i\

]c

]t
~4!

with V(r )50. Thusf(r ) obey the Helmholtz equation~1!
with l52mE/\2 and Dirichlet boundary conditions.
In order to show the analogy with Kac’s problem, let

consider the small oscillations of a fieldw(r ,t) described by
the wave equation

¹2w2
1

c2
]2w

]t2
50, ~5!

wherew could be, for example, the displacement of a me
brane, the vibrations of the electromagnetic field or the pr
sure of a fluid. If we look for periodic solutions~normal
modes! of the formw(r ,t)5f(r )e2 ivt in Eq. ~5!, we obtain
the Helmholtz equation~1! with l5(v/c)2. The eigenval-
uesln depend both on the boundary conditions~Dirichlet or
Neumann2! and on the shape of the boundary. Inverse
from the complete knowledge of the eigenvalues one m
extract information on the geometry of the boundary~for a
given boundary condition!. This can be done by analyzin
the asymptotic expansion of the sum
739 Am. J. Phys.65 ~8!, August 1997
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S~ t !5 (
n51

`

exp~2lnt ! for t→0, ~6!

which formally is the same as the one-particle partition fun
tion, Eq. ~3!. Precisely the link between both problems li
here.
A common practice in statistical mechanics textbooks3 is

to transform the sum over states~3! into an integral, step
which is justified by saying that it is correct ‘‘in the limit o
the mean de Broglie wavelength being much, much sma
than the dimensions of the container.’’ Recently M.
Molina,4 discussing the validity of such transformatio
showed approximately the main correction to the thermo
namic quantities in two particular cases: ideal gas in a b
and ideal gas in a sphere.
The purpose of this paper is to use a well-know

asymptotic expansion of the sum~6! to derive a general ex
pression for the corrections to the thermodynamic quantit
particularly the energy for an ideal gas due to a large, but
finite, container volume.
The paper is organized as follows: Section II historica

reviews the problem, Sec. III presents the calculation of
internal energy for the ideal gas in the cases of dimens
two and three. Finally, Sec. IV summarizes our conclusio
and remarks.

II. HISTORICAL BACKGROUND

The problem of the behavior of normal modes in a cavi
that is, basically counting the normal modes, has an inter
ing history, which has attracted both physicists and ma
ematicians since the latter half of the nineteenth century.
example, as early as 1882, Arthur Schuster5 posed the prob-
lem and remarked on its importance.
According to Kac,1 the problem of counting normal mode

in a cavity originated in 1910, when H. A. Lorentz was i
vited to Göttingen to deliver the Wolfskell Lectures. Durin
the fourth lecture, he presented his work with J. H. Je
about the characteristic frequencies of the electromagn
field in a three-dimensional resonant cavity of volumeV,
giving the following expression for the numberN(l) of ei-
genvalues with less than a given wavelengthl, for certain
simple geometries of the cavity:

N~l!'
V

6p2 l3/2 when l→`. ~7!

He posed to the mathematicians there present the proble
proving that this expression is independent of the geom
739© 1997 American Association of Physics Teachers
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~the shape! of the cavity, and hence depends only upon
volume. Hilbert, who was in the audience, predicted that t
conjecture would not be solved during his lifetime. Surpr
ingly H. Weyl, a former student of his, only 2 years later w
able to prove, using integral equations techniques, the
lowing result:

lim
l→`

N~l!

lD/2 5
V

~2p!D
BD , ~8!

whereD is the dimension andBD5pD/2/G(D/211) the vol-
ume of the unit sphere inD dimensions.6

Now, it is known that the study of the above limit
equivalent1 to the study of the behavior of the following sum
when t→0:

S~ t !5 (
n51

`

exp~2lnt !, ~9!

whereln are the eigenvalues of2¹2. Using the result of
Weyl in two dimensions, we obtain, whent→0,

S~ t !'
A

4pt
, ~10!

whereA is the area of the domain. In 1954 Å. Pleijel7 ob-
tained, for the case of Dirichlet boundary conditions, a s
ond term for~10!, which reads

S~ t !'
A

4pt
2
L

4

1

A4pt
for t→0, ~11!

whereL is the perimeter of the domain. Note that due to t
classical isoperimetric inequalityL2>4pA, it follows that
onceS(t) is known ~i.e., all eigenvalues are known!, it is
possible to decide whether the domain is or is not a circ
The next step toward the solution of this problem w

taken by Kac, who together with L. Bers reformulated
under the following suggestive question: Can one hear
shape of a drum?1 Kac conjectured, using probability tech
niques, that for a ‘‘drum’’ ~i.e., with fixed edges! with
smooth borders the sum~9! becomes

S~ t !'
A

4pt
2
L

4

1

A4pt
1C for t→0, ~12!

whereC5 1
6(12r ) and r is the number of holes in the do

main.
Later, in 1967, McKean and Singer8 proved Kac’s conjec-

ture and showed a general expression for Riemannian m
folds, obtaining the following expression forC in the case of
a ‘‘polygonal drum’’:

C5(
i51

n p22g i
2

24pg i
, ~13!

wheren is the number of corners andg its corresponding
interior angles.
Applying the results of McKean and Singer to domai

with smooth borders, R. Waechter9 obtained, for three di-
mensions~with Dirichlet boundary conditions!, the following
expansion of the sum~9!:

S~ t !'
V

~4pt !3/2
2

A

16pt
1

M

6p~4pt !1/2
1

J

512p
, ~14!

whereM is the surface integral of mean curvature
740 Am. J. Phys., Vol. 65, No. 8, August 1997
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2
~k11k2!dS, ~15!

with k1 and k2 the principal curvatures at the surface e
mentdS on the body surface, and

J5E
S
~k12k2!

2dS. ~16!

In summary,10 today we know the first fiveai in the follow-
ing expression of the sum~9! for domains with smooth
borders11 in D dimensions:

S~ t !5
1

~4pt !D/2 (
i50

k

ai t
i /21O~ t ~k2D11!/2!, ~17!

whereO(•) is the order of the approximation.12 In the Ap-
pendix we show how the first term of this formula can
obtained in the case of a rectangular parallelepiped, us
properties of Jacobi’s theta function.
Finally, let us add that the initial question raised by K

was answered negatively in 1992 by Gordon, Webb, a
Wolpert,13 who showed explicitly two domains that althoug
having different shapes, have the same eigenvalues~i.e.,
isospectral domains!. Notably, this theoretical result was ex
perimentally verified recently14 by employing thin micro-
wave cavities shaped in the form of two different doma
known to be isospectral.

III. PARTITION FUNCTION FOR AN IDEAL GAS

Consider an ideal monatomic gas composed ofN identical
particles of massm, enclosed in a box of volumeV, at a
temperatureT. We talk about an ‘‘ideal gas’’ when the par
ticles are noninteracting and

ldBSNVD 1/3!1, ~18!

whereldB5\/A2mkBT is the de Broglie wavelength and\
is the Planck constant divided by 2p. Standard derivation of
the partition function for aD-dimensional ideal gas3 en-
closed in a box with sidesa1 ,a2 ,...,aD begins with the cal-
culation of the eigenvalues of the Schro¨dinger/Helmholtz
equation with Dirichlet boundary conditions

en1 ,n2 ,...,nD5
\2p2

2m F S n1a1D
2

1S n2a2D
2

1•••1S nDaDD 2G .
~19!

Assuming a gas temperature~density! high ~low! enough to
apply Boltzmann’s statistics, the partition function is give
by ~2! with

z5)
i51

D

(
ni51

`

expS 2
\2p2

2mai
2 bni

2D . ~20!

Transforming the sum~20! into an integral, in the case of
box of sidea, we obtain the well-known result

Z5
1

N!

1

2ND F 2ma2

p\2bGND/2. ~21!

In general, when calculating the partition function, the e
pression one is interested in is Eq.~3!. When transforming
the sum~3! into an integral one introduces thedensity of
statesr(E). For example, the usual expression forr(E) in
three dimensions, namely,r(E)5(V/4p2)(2m/\2)E1/2, is
740G. Gutie´rrez and J. M. Ya´ñez
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obtained by counting the number of states of the Helmh
equation in a cube. However, this behavior ofr(E) is the
leading behavior ofr(E) for any bounded domain. Strictly
speaking, the density of statesr(E) will depend on the ac-
tual shape of the domain.15 Following the discussion of Sec
II, we can obtain further information about the shape of
domain by studying the asymptotic value of sum~3! whenb
goes to zero~i.e.,T→`, the ideal gas case!. Noting that the
eigenvalue problem of the Schro¨dinger equation is the sam
as the eigenvalue problem of the wave equation with Diri
let boundary conditions, we can use directly the express
of Sec. II, replacingt by (\2/2m)b.
In the next subsections, we are going to examine the c

of dimensions two and three, using the asymptotic expan
of sum ~3!. This allows us to estimate the correction to t
standard formula in the case of a finite container and help
to partially answer the question posed in the title.

A. Ideal gas in two dimensions

Let us now consider the general partition function~2! in
two dimensions. Using directly Kac’s expansion~12! with
b→0, Eq. ~3! gives

z~b!'S 2m\2 D A

4pb
2S 2m\2 D 1/2 L

4~4pb!1/2
1C. ~22!

We set out to apply this formula to thermodynamic quantit
such as the internal energyU52„] ln(Z)/]b…V,N , the
pressureP5b21

„] ln(Z)/]V…T,N , and the specific hea
Cv5(]U/]T)V,N , among others. In the case of the intern
energy we obtain

Fig. 1. Correction terms of Eq.~25! in the case of argon, for regular poly
gons from 3 to 12 sides, and a circle. The dots correspond to an arA
50.1 m2 and the diamonds to an areaA51 m2.
741 Am. J. Phys., Vol. 65, No. 8, August 1997
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U'2N
]

]b
lnXS 2m\2 D A

4pb
2S 2m\2 D 1/2 L

4~4pb!1/2
1CC.

~23!

Now, differentiating, expanding in powers ofb5(kBT)
21,

and using the definition of the thermal wavelengthL,

L~T!5A2p\2

mkBT
, ~24!

we obtain

U~T!5NkBTF11
1

8

L

A
L~T!2SC2

1

32

L2

A D 1

A
L2~T!

1O„L3~T!…G . ~25!

Similar expressions hold for the pressure and the spe
heat. It is interesting to note that, in this expression, the fi
correction term

1

8

L

A
L~T! ~26!

is independent of the constantC ~related to the smoothnes
of the perimeter!.
As an illustration of the above expression, let us partic

larize the internal energy to the case of ann-sided regular
polygon of fixed areaA and apply it to argon at standar
conditions.
In this case, the perimeter–area relation is given by

L2

A
54n tanS p

n D , ~27!

whereas the constantC in Eq. ~13! is

C5
1

6

~n21!

~n22!
. ~28!

Fig. 2. Isospectral domains in two dimensions~see Ref. 24!.
Table I. Expressions of the termsV, A, M and J of Eq. ~29! for a rectangular parallelepiped of sidesa1 ,
a2 , a3 , a cylinder of lengthl and radiusr and a sphere of radiusR.

V A M J

Parallelepiped a1a2a3 2(a1a21a1a31a2a3)
3
2p(a11a21a3) 264p

Cylinder pr 2l 2pr (r1 l ) p

2
~2l13pr! 2p S lr2 64

3 D
Sphere

4
3pR

3 4pR2 4pR 0
741G. Gutie´rrez and J. M. Ya´ñez
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It is interesting to see what happens in the ideal gas reg
with the correction terms~i.e., how sensitive the gas is t
‘‘feel’’ the shape of its container! when we decrease or in
crease the areaA ~volumeV!. The de Broglie wavelength
ldB associated with argon at standard conditions isldB

'0.045 Å, and the specific volume is 22.41 m3/kmol, giv-
ing a typical interatomic distance of aboutl530 Å. Assum-
ing the requirements for a dilute and noninteracting gas w
l,10 Å are no longer valid, we can vary, for example, fro
A51 m2 (V51 m3) to A50.1 m2 (V50.1 m3).
Figure 1 shows the corrections to the energy for differ

regular polygons, from 3 to 12 sides, and a circle, with ar
A51 m2 ~diamonds! andA50.1 m2 ~dots!. The corrections
with respect to an ideal gas are very small, the first-or
correction being about 10212 and the next corrections sti
smaller. The corrections are smallest in the case of a ci
and largest in the case of a triangle, which is expected du
the isoperimetric inequality. The difference between
circle and triangle corrections increases as the area
creases.
Of course, according to the results of Gordon, Webb, a

Wolpert,13 there are domains where, although different
shape, the thermodynamic properties of an ideal gas wil
exactly the same, independent of the order of the approxi
tion in ~25!. An example of this type of domain in shown i
Fig. 2. In this sense, an ideal gas in two dimensions can
feel the shape of its container, although it can ‘‘feel’’ som
geometric properties.

B. Ideal gas in three dimensions

Let us go to a more realistic physical example: an id
gas in three dimensions. Here we need to replace Kac’s
mula ~12! by Waechter’s result~14!, obtaining

z~b!'S 2m\2 D 3/2 V

~4pb!3/2
2S 2m\2 D A

16pb

1
1

6p
A2m

\2

M

~4pb!1/2
1

J

512p
. ~29!

For the internal energy, after differentiating, expanding
powers ofb5(kBT)

21, and using the definition of the ther
mal wavelengthL, we obtain

U~T!5
3

2
NkBTF11

1

12

A

V
L~T!2

1

6 S 2

3p
2
1

8

A2

MVD

Fig. 3. Correction terms of Eq.~30! in the case of argon, for a cube,
cylinder whose length is twice the radius, and a sphere. The dots corres
to a volumeV50.1 m3, the squares to a volumeV50.5 m3, and the dia-
monds to a volumeV51 m3.
742 Am. J. Phys., Vol. 65, No. 8, August 1997
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L2~T!2

1

8p S J641
1

3

AM

V
2

p

24

A3

V2D
3
1

V
L3~T!1O„L4~T!…G . ~30!

Note that the first correction term of this expansion on
depends, aside fromL(T), on the area–volume relation
having the same functional form for any contain
geometry.16

The values ofV, A, M , andJ for a rectangular parallel-
epiped, a cylinder, and a sphere are given in Table I. Fr
Minkowski’s isoperimetric inequalities,M2>4pA and A2

>3VM, we can estimate the corrections for different fi
ures. Thus, for a fixed volume~or area, orM !, the first cor-
rection is smallest in the case of a sphere.
We can particularize these results to the case of argo

the ideal gas regime. The corrections to the energy for th
different shapes of its container are shown in Fig. 3. Aga
as in the two-dimensional case, only the first-order correct
term of the expansion is at all significant, although ve
small, increasing when the volume decreases.
Finally, it is noteworthy that, also in the three-dimension

case, an ideal gas cannot feel the shape of its container
though some geometrical properties can be ‘‘felt.’’ In fa
one could build a box with isospectral cross-sectional sha
as done in Ref. 14 with the surfaces shown in Fig. 2, and
it with gas. In this case, in spite of the fact that the shapes
different, the expressionsV, A, M , andJ of Eq. ~29! ~and all
higher order corrections! will be exactly the same, so th
thermodynamic properties will not show any differences.

IV. CONCLUDING REMARKS

In this work we have investigated the influence of a fin
container on the thermodynamic quantities of an ideal g
The calculations are based on well-known results from
asymptotic properties of the spectrum of the Laplacian. T
energy is obtained, both in two and three dimensions, as
expansion in powers of the thermal wavelength, whose co
ficients depend on the geometric properties of the contai
Thus, in principle, an ideal gas could ‘‘feel’’ some aspec

of the shape of its container, because its thermodyna
quantities depend on geometric properties such as the
ume, area, principal curvature ratios, and so on. Actually,
identification of these in Eq.~30! is not as direct as in Eq
~14!. However, a practical example with argon shows th
the corrections are very small, so in practice only the fir
order correction is significant. In other words, this fact re
forces the accepted idea that the standard derivation of
partition function of an ideal gas is a very good approxim
tion.
As a final remark, let us say that recently the existence

isospectral domains in two dimensions has been dem
strated, both theoretically and experimentally. By this mea
one can also build three-dimensional isospectral doma
Hence, an ideal gas, even with all terms in the expansion
the partition function completely known, is not able to di
criminate in these cases between two different shapes.
can conclude that, strictly speaking, the answer to the qu
tion posed in the title is negative.

nd
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APPENDIX

Following closely the method employed in Ref. 17, w
will show, as an example, how to calculate the asympto
expansion~9! for a box with sidesa1 , a2 , anda3 @see also
Ref. 9, Ref. 18~and references therein!, and Ref. 19#. The
sumS(t) reads

S~ t !5 (
k51

`

e2lkt5)
i51

3

(
ni51

`

e2p2ni
2t/ai

2

5)
i51

3
1

2
XuS pt

ai
2 D 21C,

whereu~•! is Jacobi’s theta function.
As the theta function satisfies Jacobi’s identityu(t)

5(1/At)u(1/t) ~see Ref. 20!, we get

S~ t !5
1

8 )
i51

3 X ai

Apt
uS ai2pt D 21C.

Also, we have

uS 1xD5112(
k51

`

e2k2p/x<112(
k51

`

e2kp/x511O~e2p/x!.

Thus it is clear that

S~ t !5
a1a2a3
~4pt !3/2

2
2~a1a21a2a31a1a3!

16pt

1
~a11a21a3!

4~4pt !1/2
2
1

8
1exp. small.
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