Can an ideal gas feel the shape of its container?
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Thermodynamic quantities of an ideal gas enclosed in a finite container are examined. We use an
asymptotic expansion for high temperatures to obtain the partition function of an ideal gas, both in
two and three dimensions, showing the leading corrections to the internal energy due to a finite
container. In the three-dimensional case, the first correction term depends only on the area—volume
ratio, but higher order terms depend also on other geometric properties of the container. However,
according to recent results, we show that the answer to the question posed in the title is negative.
© 1997 American Association of Physics Teachers.

I. INTRODUCTION *
. . . . S(t)=2, exp(—Aqt) for t—0, 6)
In this paper we are interested in examining how the ther- n=1
modynamic properties of an ideal gas are influenced by thghich formally is the same as the one-particle partition func-

geometry of its container. Perhaps it is not evident, but thi%ion, Eq. (3). Precisely the link between both problems lies
problem is closely related to the one formulated by M. Kacpare.

as: “Can one hear the shape of a drunt?Both problems “A"common practice in statistical mechanics textbddks

can be reduced to the study of the distribution and behaviofy transform the sum over statéd) into an integral, step

of the eigenvalues of the Helmholtz equation, which is justified by saying that it is correct “in the limit of
VZ2p(r)+Ne(r)=0, (1)  the mean de Broglie wavelength being much, much smaller

than the dimensions of the container.” Recently M. .
Molina,* discussing the validity of such transformation,
showed approximately the main correction to the thermody-
namic quantities in two particular cases: ideal gas in a box
and ideal gas in a sphere.

with Dirichlet boundary conditions¢=0 on the boundany
over a domain of defined geometry.

Thermodynamic properties of an ideal gas can be ex
tracted from the partition function

P ﬁ @ The purpose of this paper is to use a well-known
~T NI asymptotic expansion of the suf®) to derive a general ex-
i ) ) pression for the corrections to the thermodynamic quantities,
whereN is the number of particles aris particularly the energy for an ideal gas due to a large, but yet
finite, container volume.
Z:{S%e$ exp(— BEn), 3 The paper is organized as follows: Section Il historically

reviews the problem, Sec. Il presents the calculation of the
with B=(kgT) "%, kg is Boltzmann's constant, arilflis the  internal energy for the ideal gas in the cases of dimension
absolute temperature. The eigenval(esergy levelsof one  two and three. Finally, Sec. IV summarizes our conclusions
particle, E,,, are obtained from the stationary staigg,t) and remarks.
= ¢(r)e 'BY" of the time-dependent Schtimger equation,

2
_ ;‘_m Vv g—in 2 (4 Il HISTORICAL BACKGROUND

J

at

. _ . The problem of the behavior of normal modes in a cavity,

with V(r) =0. T2hus¢(r) ©Obey the Helmholtz equatiof) 5t s ‘hasically counting the normal modes, has an interest-

with A =2mE/%~ and Dirichlet boundary cpndltlons. ing history, which has attracted both physicists and math-
In order to show the analogy with Kac’s problem, let us ematicians since the latter half of the nineteenth century. For

consider the small oscillations of a fielg(r,t) described by example, as early as 1882, Arthur Schuspmsed the prob-

the wave equation lem and remarked on its importance.
) 1 ¢ According to Kact the problem of counting normal modes
Vie— 252 =0, (5 in a cavity originated in 1910, when H. A. Lorentz was in-

vited to Gdtingen to deliver the Wolfskell Lectures. During
where¢ could be, for example, the displacement of a mem-he fourth lecture, he presented his work with J. H. Jeans
brane, the vibrations of the electromagnetic field or the presabout the characteristic frequencies of the electromagnetic
sure of a fluid. If we look for periodic solutiongormal  field in a three-dimensional resonant cavity of volumg
mode$ of the forme(r,t)=¢(r)e™'“" in Eq. (5), we obtain  giving the following expression for the numbhi(\) of ei-
the Helmholtz equatioril) with A =(w/c)?. The eigenval- genvalues with less than a given wavelengthfor certain
uesA\,, depend both on the boundary conditigdBsrichlet or ~ simple geometries of the cavity:
Neumann) and on the shape of the boundary. Inversely, \V;
from the complete knowledge of the eigenvalues one may N()\)ww \¥2 when A —. 7
extract information on the geometry of the boundéior a &
given boundary condition This can be done by analyzing He posed to the mathematicians there present the problem of
the asymptotic expansion of the sum proving that this expression is independent of the geometry
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(the shapgof the cavity, and hence depends only upon the 1

volume. Hilbert, who was in the audience, predicted that this M =f 5 (K1t K2)dS, (15
conjecture would not be solved during his lifetime. Surpris-

ingly H. Weyl, a former student of his, only 2 years later waswith «, and «, the principal curvatures at the surface ele-
able to prove, using integral equations techniques, the folmentds on the body surface, and

lowing result:

NN v J=j(K1—K2)2dS (16)
lim WQ— = W Bp, (8 S
Mo In summary:® today we know the first five; in the follow-
whereD is the dimension anBp= #°’4T'(D/2+1) the vol-  ing expression of the suni©) for domains with smooth
ume of the unit sphere iB dimension$. borders! in D dimensions:
Now, it is known that the study of the above limit is 1 ko
equivalent to the study of the behavior of the following sum,  S(t)= ———5 >, ait’2+0(tk"P+172), (17
. (47t)"° =0
whent—0:
> whereO(-) is the order of the approximatid.In the Ap-
S(t)= E exp(—A\pt), 9 pendix we show how the first term of this formula can be
n=1 obtained in the case of a rectangular parallelepiped, using

properties of Jacobi’s theta function.

Finally, let us add that the initial question raised by Kac
was answered negatively in 1992 by Gordon, Webb, and
Wolpert}® who showed explicitly two domains that although
having different shapes, have the same eigenvalues
) ) : isospectral domainsNotably, this theoretical result was ex-
whereA is the area of the domain. In 1954 A. Pleﬁeib- perimenta”y verified recenﬂﬁ by emp|oying thin micro-

tained, for the case of Dirichlet boundary conditions, a secwave cavities shaped in the form of two different domains

where \, are the eigenvalues of V2. Using the result of
Weyl in two dimensions, we obtain, wher-0,

_ A
S(t ~ I (10

ond term for(10), which reads known to be isospectral.
A L 1
SO~7 "7 Jaat for t=0, 1D )1, PARTITION FUNCTION FOR AN IDEAL GAS

wherelL is the perimeter of the domain. Note that due to the Consider an ideal monatomic gas composel adentical
classical isoperimetric inequality>=4A, it follows that  particles of massn, enclosed in a box of volum¥, at a
once S(t) is known (i.e., all eigenvalues are knownit is ~ temperaturel. We talk about an “ideal gas” when the par-
possible to decide whether the domain is or is not a circle. ticles are noninteracting and
The next step toward the solution of this problem was N\ 3

taken by Kac, who together with L. Bers reformulated it  MdB v) <1, (18
under the following suggestive question: Can one hear the
shape of a drum?Kac conjectured, using probability tech- where\g=7%/\2mksT is the de Broglie wavelength arid
niques, that for a “drum” (i.e., with fixed edges with is the Planck constant divided byr2Standard derivation of

smooth borders the suf®) becomes the partition function for aD-dimensional ideal gdsen-
A 1 closed in a box with sidea; ,a,, ...,ap begins with the cal-
S(t)~ —— - —=——=+C for t—0, (12)  culation of the eigenvalues of the Schiager/Helmholtz
4t 4 \[4mt equation with Dirichlet boundary conditions
whereC=g(1—r) andr is the number of holes in the do- . _ h?m? N ? N2 2+__.+ "o 2
main. NNzMp 2m || ay a, ap

Later, in 1967, McKean and Sindgoroved Kac's conjec-

ture and sho_wed a general expressiqn for Riemannian man,kssuming a gas temperatuggensity high (low) enough to
folds, obtaining the following expression f@rin the case of apply Boltzmann’s statistics, the partition function is given

a “polygonal drum": by (2) with
n 2_ .2 D o
T Y% /272
C= , (13 = - 2
;1 Sy, z i]:[l niEjl X ~ o2 Bn,). (20)
wheren is the number of corners angd its corresponding Transforming the sunt20) into an integral, in the case of a
interior angles. box of sidea, we obtain the well-known result
Applying the results of McKean and Singer to domains 1 1 [2ma2]Np2
with smooth borders, R. Waechteobtained, for three di- Z=15N0 | 5724 (21
mensiongwith Dirichlet boundary conditionsthe following Nt 2 Th*p
expansion of the sur(®): In general, when calculating the partition function, the ex-
A M J pression one is interested in is E§). When transforming
S(t)~ (477t)3’2_ 160t + 67r(477t)1’2+ 5107 (14  the sum(3) into an integral one introduces thiensity of

statesp(E). For example, the usual expression fdiE) in
whereM is the surface integral of mean curvature three dimensions, namely(E)= (V/47?)(2m/%2)EY?, is
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Fig. 1. Correction terms of Ed25) in the case of argon, for regular poly-
gons from 3 to 12 sides, and a circle. The dots correspond to anfarea

=0.1 n? and the diamonds to an aréa=1 n?. P oml A 2m\ 12 L
U~—-N-—=Inllsz| —5 |52 777575 1+tC|
B he) dwB \ A A4(47PB)
(23

obtained by counting the number of states of the Helmholtz,,, qifferentiating. expanding in powers &= (koT) 2
equation in a cube. However, this behaviorf) is the ;Jsing the defigi’tionpof theqcherr%al wavgerf@t% )
leading behavior op(E) for any bounded domain. Strictly >
speaking, the density of statp$E) will depend on the ac- A(T)= /ﬂ (24)
tual shape of the domaifi.Following the discussion of Sec. mkg T’

II, we can obtain further information about the shape of theWe obtain
domain by studying the asymptotic value of s¢@hwheng

goes to zerdi.e., T—o, the ideal gas cageNoting that the _ } E _( _ i L_z) E 2
eigenvalue problem of the Scliioger equation is the same U(T)=NkgT| 1+ 8 A AM-|c 32A) A AXD
as the eigenvalue problem of the wave equation with Dirich-

let boundary conditions, we can use directly the expressions +OA¥T))|. (25)
of Sec. Il, replacing by (%2%/2m)g.

In the next subsections, we are going to examine the case§mjjar expressions hold for the pressure and the specific
of dimensions two and three, using the asymptotic expansiofeat |t is interesting to note that, in this expression, the first
of sum(3). This allows us to estimate the correction to the .qrrection term

standard formula in the case of a finite container and helps us
to partially answer the question posed in the title. 1 E A(T) (26)
8 A

is independent of the consta@t (related to the smoothness
A. Ideal gas in two dimensions of the perimeter.

As an illustration of the above expression, let us particu-
larize the internal energy to the case of musided regular
polygon of fixed areaA and apply it to argon at standard

Let us now consider the general partition functi@ in
two dimensions. Using directly Kac's expansi¢i?) with
B—0, Eq.(3) gives

12 conditions.
2(8)~ 2my A [2m L Le 22 In this case, the perimeter—area relation is given by
#2) 4B \K%] A@4mp)RT L2 -

We set out to apply this formula to thermodynamic quantities A =4n tar(H ' 27)
such as the internal energy=—(d In(Z)/dB)yn. the . .
pressureP=8"1(9 In(£)/dV)r, and the specific heat whereas the constat in Eq. (13) is
C,=(aU/dT)y n, among others. In the case of the internal _1(n-1 (28)
energy we obtain 6 (n—2)°

Table I. Expressions of the termg A, M andJ of Eq. (29) for a rectangular parallelepiped of sidesg,
a,, a3, a cylinder of lengtH and radius and a sphere of radiug.

\ A M J
Parallelepiped a,a,a;5 2(a,a,tajaz+ayas) gw(al-s- a,+as) — 64
i 2 + T | 64
Cylinder rel 2ar(r+1) T 2A+3mm) P L
2 r 3
Sphere 3R 47R? 47R 0
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c

8 . , . . .
2 [ . h Note that the first correction term of this expansion only
§ 6 [ - ] depends, aside fromA(T), on the area—volume relation,
o [ ¢ . - ] having the same functional form for any container
°© 3L . . * ] geometry'®
cube cylinder sphere The values oV, A, M, andJ for a rectangular parallel-

epiped, a cylinder, and a sphere are given in Table |. From
Fig. 3. Correction terms of Eq30) in the case of argon, for a cube, a Minkowski’s isoperimetric inequalitiesM?=4xA and A2
cylinder whose length is twice the radius, and a sphere. The dots correspongt 3\ M, we can estimate the corrections for different fig-
to a volumeV=0.1 n?, the squares to a volumé=0.5 n?, and the dia- ures. Thus, for a fixed volum@r area, o), the first cor-
monds to a volum&/=1 nv. o .

rection is smallest in the case of a sphere.

We can particularize these results to the case of argon in

the ideal gas regime. The corrections to the energy for three
Gifferent shapes of its container are shown in Fig. 3. Again,

“feel” the sh fit ta h d .~ as in the two-dimensional case, only the first-order correction
eel” the shape of its containgrwhen we decrease or in- 4o of the expansion is at all significant, although very

crease the areA (volume V). The de Broglie wavelength small, increasing when the volume decreases.

Ags associated with argon at standard conditions\ g Finally, it is noteworthy that, also in the three-dimensional
~0.045 A, and the specific volume is 22.4%/kmol, giv-  case, an ideal gas cannot feel the shape of its container, al-
ing a typical interatomic distance of abdut 30 A. Assum-  though some geometrical properties can be “felt.” In fact,
ing the requirements for a dilute and noninteracting gas wheone could build a box with isospectral cross-sectional shapes,
<10 A are no longer valid, we can vary, for example, fromas done in Ref. 14 with the surfaces shown in Fig. 2, and fill
A=1nm? (V=1m) to A=0.1 nf (V=0.1 n?). it with gas. In this case, in spite of the fact that the shapes are
Figure 1 shows the corrections to the energy for differendifferent, the expressiong, A, M, andJ of Eq.(29) (and all
regular polygons, from 3 to 12 sides, and a circle, with areafiigher order correctionswill be exactly the same, so the
A=1n? (diamond$ and A=0.1 n? (dot9. The corrections thermodynamic properties will not show any differences.
with respect to an ideal gas are very small, the first-order
correction being about 102 and the next corrections still
smaller. The corrections are smallest in the case of a circle
and largest in the case of a triangle, which is expected due to
the isoperimetric inequality. The difference between thelV. CONCLUDING REMARKS
circle and triangle corrections increases as the area de-
creases. In this work we have investigated the influence of a finite
Of course, according to the results of Gordon, Webb, andontainer on the thermodynamic quantities of an ideal gas.
Wolpert?!® there are domains where, although different inThe calculations are based on well-known results from the
shape, the thermodynamic properties of an ideal gas will basymptotic properties of the spectrum of the Laplacian. The
exactly the same, independent of the order of the approximaenergy is obtained, both in two and three dimensions, as an
tion in (25). An example of this type of domain in shown in expansion in powers of the thermal wavelength, whose coef-
Fig. 2. In this sense, an ideal gas in two dimensions canndicients depend on the geometric properties of the container.
feel the shape of its container, although it can “feel” some Thus, in principle, an ideal gas could “feel” some aspects
geometric properties. of the shape of its container, because its thermodynamic
guantities depend on geometric properties such as the vol-
ume, area, principal curvature ratios, and so on. Actually, the
identification of these in Eq30) is not as direct as in Eq.
Let us go to a more realistic physical example: an ideaf14). However, a practical example with argon shows that
gas in three dimensions. Here we need to replace Kac's fothe corrections are very small, so in practice only the first-

It is interesting to see what happens in the ideal gas regim
with the correction termgi.e., how sensitive the gas is to

B. Ideal gas in three dimensions

mula (12) by Waechter's resultl4), obtaining order correction is significant. In other words, this fact rein-
312 forces the accepted idea that the standard derivation of the
2m Vv 2m| A b
2(B)~| — | == partition function of an ideal gas is a very good approxima-
ne)  (4mp)** \ a%) 16mB tion.
1 5m M 3 As a final remark, let us say that recently the existence of
+—— A /—2‘ o+ _ (29)  isospectral domains in two dimensions has been demon-
67 NV 4 (47pB) 512 strated, both theoretically and experimentally. By this means,

For the internal energy, after differentiating, expanding in®ne can also build three-dimensional isospectral domains.

powers of8= (kgT) %, and using the definition of the ther- Hence, an ideal gas, even with all terms in the expansion of
mal wavelengthi we,obtain the partition function completely known, is not able to dis-

) criminate in these cases between two different shapes. We
i é A(T)— } ( 2 1A ) can conclude that, strictly speaking, the answer to the ques-
12V 6

+ : X Lo !
! tion posed in the title is negative.

37 8 MV

3
U(T)=5 NkgT
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APPENDIX

Following closely the method employed in Ref. 17, we

will show, as an example, how to calculate the asymptotic

expansion9) for a box with sidesa;, a,, anda; [see also
Ref. 9, Ref. 18(and references therginand Ref. 19 The
sum S(t) reads

3 0
S(t) = 2 e—)\kt:H 2 e—7T2ni2t/ai2
k=1

i=1 ni:1
3
1 art
= =10 -1},

ilJl 2 ( (g.z) )

where 6(-) is Jacobi’s theta function.
As the theta function satisfies Jacobi's identitit)

= (1) 6(1k) (see Ref. 2)) we get

3 ai2
Hﬁ—l

1 a;
g L

Jart

S(t)=

Also, we have

l oo oo

0(— =1+2, e ¥ ™<1+23 e kX=1+0(e ™).
X k=1 k=1

Thus it is clear that

S(t)= a,aa; 2(aja,tayaztagas)
U= Gm7 16t
(agtataz) 1

W_ 8 +exp. small.
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