

ADIS'12, München May 2012 Structural, elastic, vibrational and electronic properties of amorphous Al₂O₃ from *ab initio* calculations

<u>Gonzalo Gutiérrez</u> and Sergio Davis Department of Physics, Faculty of Sciences Universidad de Chile, Chile. www.gnm.cl

Molecular Dynamics simulations

Basic diagnostics

- Pair distribution function
- Angular distribution
- Coordination numbers

Vibrational density of states
D(w)

$$Z_{\alpha(\beta)}(t) = \left\langle \sum_{i=1}^{N} m_{i\alpha} \vec{v}_{i\alpha}(0) \cdot \vec{v}_{i\alpha}(t) \right\rangle \quad \text{VACF}$$

$$\mathcal{D}_{\alpha(\beta)}(\omega) = \frac{1}{\sqrt{2\pi}} \int \frac{Z_{\alpha(\beta)}(t)}{Z_{\alpha(\beta)}(0)} \exp\left(-i\omega t\right) dt$$

Direct visualization

Ceramic material with several technological applications due to high melting point (2327 K), extreme hardness (Moh 9) y low electrical conductivity

Structural phase transitions liquid $\rightarrow \gamma \rightarrow \delta$, $\theta \rightarrow \alpha$ -alumina amorphous (a.o) $\rightarrow \gamma \rightarrow \theta \rightarrow \alpha$ -alumina

Amorphous Al₂O₃

Al₂O₃-SiO₂ glass is one of the the most important systems in ceramics science

- Many technological applications: catalisis, dielectric, optical devices, microlectronics and thin films devices
- It is present in the surface of aluminum in contact to air (oxidation and passivation phenomena)
- Most alumina thin films are amorphous: they are composed by porous amorphous alumina, but its atomic properties are not well understood so far

Procedure

Combined use of classical an *ab initio* Molecular Dynamics:

Computational details

- ab initio MD by using VASP (Vienna Ab Initio Simulation Package)
- Density Functional Theory with LDA (local density approximation)
- Ultrasoft pseudopotentials
- Energy cutoff E_{cut} = 296,77 eV (21,81 Ry)
- Only gamma point, $\Gamma = (0,0,0)$
- Time step of 3 fs for atomic motion

Pair distribution function

Classical MD: G. G, B. Johansson, PRB 65,104202, (2002); GG et al J. Mat. Sci. 45, 5124 (2010)

Neutron static structure factor: experiments and simulation

Exp.: P. Lamparter, R. Kniep, Physics B **234**, 405 (1997)

Interatomic distances and coordination numbers

Results	R _{AI-AI} (Ă)	R _{AI-O} (Ă)		R ₀₋₀ (Ă)		
Lamparter y Kniep	3,2 ± 0,55	1	$,8 \pm 0,2$	21	2,8	± 0,58
Cassical MD	3,24		1,74		2,77	
ab initio MD	3,27		1,80		2,91	
Results	n _{Al-Al}		n _{Al-O}	n(D-Al	n ^{O-O}
Classical MD	9,1	9,1		2,	65	16,85
ab initio MD	8,9	8,9		2,	99	16,46

Angular distribution

Basic building blocks

Connectivity of basic units

Vibrational density of states

Connectivity between basic units

Elastic properties

Electronic density of states

Electronic density of states: comparison to γ-alumina

γ-Al₂O₃ Exp: B. Ealet et al. Thin Solid Films **250**, 92 (1994) Theory: GG, A. Taga. B. Johansson, Phys. Rev. B **65** 012101 (2002) GG, E. Menéndez, Phys. Rev. B **72** 035116 (2005)

Electron localization function

Charge transfer calculated via Voronoi analysis: $A1 \sim 2.89$ $O \sim -1.92$

Different alumina phases

Phase	Density g/cm ³	Al Coordination Number	Bond length Al-O (A)	
amorphous ^b	3.17	4(76%), 5 (22%)	1.76	
	3.9	4(23%), 5(51%), 6(21%)	1.77	
	4.2	4(15%), 5(21%), 6(64%)	1.79	
a, ab-initio ^d	3.17	4(50%), 5(42%), 6(5%)	1.81	
liquid ^a	3.17	3(13%), 4(66%), 5(20%)	1.76	
gamma ^c	3.66	4(37%), 6(63%)	1.94 +/- 0.3	
theta	3.65	4(50%), 6(50%)	1.9 +/- 0.3	
alpha	3.98	6 (100%)	1.97	

a) PRE 61, 2723 (2000),

b) PRB 65, 104202 (2002), unpublished (2008)

c) PRB **65**, 012101 (2002), PRB, **72**, 035116 (2005) d) J. Phys.: Condens. Matter 23, 495401 (2011)

Conclusions

- Using of ab-initio MD appear new features, absent in (simple) empirical interatomic potential
- \square The building blocks of the system are AlO₄ and AlO₆
- The connectivity of this units is both by the corners (majority) and by the edges (minority)
- The v-DOS present two bands. The low frecuency band
- is related to the inter-unit vibrations, and the high band to the intra-unit vibrations
- \blacksquare B = 193 GPa, the lower of all polymorph
- The e-DOS is similar to the one of the crystalline γ -Al₂O₃ with a gap of 2.9 eV

Acknowledgments

Grant Anillo ACT/24-Chile
SD thanks Fondecyt 3110017 and GG ENL 10/06 VRID–Univ. de Chile.