

Thermal stability and dynamical properties of $Ti_3SiC_2(0001)$ at high temperatures: First-principles calculations

Walter Orellana¹ and <u>Gonzalo Gutiérrez²</u>

¹Facultad de Ciencias Físicas, Universidad Andrés Bello ²Departamento de Física, Facultad de Ciencias, Universidad de Chile

www.gnm.cl

4th Workshop on novel methods for electronic structure calculations, and first southamerican congress on materials *Universidad Nacional de La Plata, Argentina*

Ab-initio in Chile

Approx 20-25 faculty + 10-12 PhD student

Santiago Uchile 4+6 PUC: 4 USACH 3 UNAB 1+3

Valparaiso UTFSM-PUCV: 2

Valdivia UACH: 3

Outline

- ✓ Introduction
- ✓ Theoretical approach
- ✓ Stability and energetics of $Ti_3SiC_2(0001)$ at 0K
- ✓ Stability of Ti₃SiC₂(0001) at high temperature (up to 1400 °C)
- ✓ Oxidation processes by O_2 and H_2O
- ✓ Conclusions

MAX Phases

Ternary layered compounds

Ex.: Ti_2AIC , Ti_3SiC_2 , Ti_4AIN_3

MAX Phases

IA	IIA					_						IIIA	IVA	VA	VIA	VII	VIIIA
		н													Не		
Li	Ве		N	early	transitic	n A	group	DA I	ХС	and/or		В	с	N	0	F	Ne
Na	Mg	metal element N							AI	Si	Р	S	CI	Ar			
к	Са	Sc	Ti	v	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Хе
Cs	Ва	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ті	Pb	Bi	Ро	At	Rn
Fr	Ra	Lr	Unq	Unp	Unh	Uns	Uno	Une									
211 Ti ₂ AIC* Ti ₂ AIN* Hf ₂ PbC* Cr ₂ GaC V ₂ AsC Ti ₂ AIC* Ti ₂ AIN* Ti ₂ AIN ₂ SC ₂ S* Nb ₂ AsC Ti ₂ AIN ₂ SC ₂ S* Nb ₂ AsC Ti ₂ AIN ₂ SC ₂ S* Nb ₂ AsC Ti ₂ AIN ₂ SC ₂ S* Nb ₂ AsC Ti ₂ AIN ₂ SC ₂ S* Nb ₂ AsC Ti ₂ AIN ₂ SC ₂ S* Nb ₂ AsC Ti ₂ AIN ₂ SC ₂ S* Nb ₂ AsC Ti ₂ AIN ₂ SC ₂ S* Nb ₂ AsC Ti ₂ AIN ₂ SC ₂ S* Nb ₂ AsC Ti ₂ AIN ₂ SC ₂ S* Nb ₂ AsC Ti ₂ AIN ₂ S* Nb ₂ ASC Ti ₂																	

-1967:

Synthesized by Nowotny et al. -1990':

study by Barsoum et al.

-More than 60 Max phases has been obtained to date

211	$\begin{array}{l} \text{Ti}_{2}\text{AIC}^{*}\\ \text{Nb}_{2}\text{AIC}^{*}\\ \text{Ti}_{2}\text{GeC}^{*}\\ \text{Zr}_{2}\text{SnC}^{*}\\ \text{Hf}_{2}\text{SnC}^{*}\\ \text{Ti}_{2}\text{SnC}^{*}\\ \text{Nb}_{2}\text{SnC}^{*}\\ \text{Zr}_{2}\text{PbC}^{*} \end{array}$	$\begin{array}{l} \text{Ti}_2\text{AIN}^* \\ (\text{Nb},\text{Ti})_2\text{AIC}^* \\ \text{Cr}_2\text{AIC} \\ \text{Ta}_2\text{AIC} \\ \text{V}_2\text{AIC} \\ \text{V}_2\text{PC} \\ \text{Nb}_2\text{PC} \\ \text{Ti}_2\text{PbC}^* \end{array}$	$\begin{array}{l} Hf_2PbC^*\\ Ti_2AIN_{0.5}C_{0.5}^*\\ Zr_2SC\\ Ti_2SC\\ Nb_2SC\\ Hf_2SC\\ Ti_2GaC\\ V_2GaC\\ \end{array}$	Cr_2GaC Nb_2GaC Mo_2GaC Ta_2GaC^* Ti_2GaN Cr_2GaN V_2GaN V_2GeC	V_2 AsC Nb ₂ AsC Ti ₂ CdC Sc ₂ InC Ti ₂ InC Zr ₂ InC Nb ₂ InC Hf ₂ InC	$Ti_{2}InN$ $Zr_{2}InN$ $Hf_{2}InN$ $Hf_{2}SnN$ $Ti_{2}TIC$ $Zr_{2}TIC$ $Hf_{2}TIC$ $Zr_{2}TIC$ $Zr_{2}TIN$
312	Ti ₃ AIC ₂ * Ti ₃ SiC ₂ *	Ti₃GeC₂*	41	3 Ti ₄ AIN	3*	

MAX Phases: structure

 Ti_3SiC_2 Ti_4AIN_3

(Micrograph by L .Farber & I. Levin, NIST)

Ti₂AIC

Best attributes of metals and ceramics

Like metals: -Thermal and electrical conductors (better than Ti) -Readily machinable -Plastic at high temperatures

Like ceramics: -Elastically rigid -Lightweight -Maintain their strengths at high temperature

Barsoum (2001)

Oxidation v/s rupture with temperature

M. W. Barsoum & T. El-Raghy, American Scientist 89, 334 (2001)

MAX phases: applications

(From Kanthal Corp. Sweden, and 3-ONE- 2 Company)

- a) and b): heating elements
- c) gas burner nozzles in corrosive environments,
- d) high-temperature bearings,
- e) diamond/Ti3SiC2 composites for dry drilling of concrete (developed with Hilti Corp.),
- f) examples of very thin walled parts manufactured by slip casting.

MAX phases: stiff, lightweight and ductile

Potential applications in high-performance jet engines for aircraft

The current jet engine technology (TiNi and TiAl alloys, like those used in the Airbus A330), is limited by material failure at high temperatures.

Ti₃SiC₂(0001)

- \checkmark Ti₃SiC₂ is a representative member of M_{n+1}AX_n class of materials
- It shows remarkable combination of properties between metal and ceramic with resistance to chemical attack (oxidation and corrosion) suggesting application as coating materials.
- Experiments show than Ti₃SiC₂ thin films are stable during vacuum furnace up to 1100-1200 °C, above which a decomposition is initiated by out-diffusion and evaporation of Si atoms from the top of (0001) surface on a nanometer depth scale.
 Emmerlich *et al.*, Acta Materialia 55, 1497 (2007)
- ✓ The thermophysical and corrosion-resistant properties of Ti₃SiC₂(0001) in the atomic scale are currently unknown

What we have done*

- ✓ Determine the energetic and electronic properties for all Ti₃SiC₂(0001) surface terminations (at 0K).
 - ✓ Density functional theory calculations (DFT-GGA), SIESTA code.
 - ✓ Symetrical slab of (3x3) surface unit cell (19-23 Monolayers).
 - ✓ Brillouin zone sampling: 3x3x1 Monkhorst-Pack mesh
- ✓ Determine the relative stability of these surfaces at high temperatures
 - ✓ Constant-temperature ab initio molecular dynamic simulations.
 - ✓ Asymmetrical slab of (3x3) surface unit cell (8-9 Monolayers).
 - ✓ Brillouin zone sampling: Γ point

* W. Orellana & G. Gutiérrez, Surface Science 605, 2087 (2011)

Electronic properties of bulk Ti₃SiC₂

Ti₃SiC₂ band structure

a = b = 3.08 Å (+0.5%) c = 17.71 Å (+0.2%) Equilibrium lattice constants (deviation from experiments)

Electronic Properties

La Plata, November 2011

Surface Calculations

Bulk Ti_3SiC_2 has two kind of bonds for titanium: C-Ti1-C and C-Ti2-Si, giving six terminations along the (0001) direction: C(Ti1), C(Ti2), Si(Ti2), Ti1(C), Ti2(C), Ti2(Si).

Surface Energy

Surface energy of a symmetrical-terminated slab at zero temperature and negligible pressure is given by

$$\gamma = (E_t - \sum n_i \mu_i)/2A$$

$$E_t$$
 = total energy of the slab
 A = area of the slab
 n_i = number of the atomic species *i*=C,Si,Ti
 μ_i = chemical potential of the species *i*

- the chemical potentials μ_i are constrained to vary according to the MAX phase stoichiometric relation

- μ_i takes the value of its respective bulk phase

Relative surface stability

Surface	Mono layer		γ (J/m ²) (3x3)	$ \begin{array}{c} E_R(eV) \\ (1x1) \end{array} $	γ (J/m ²) (1x1)
C(Til)	21	-17.15	8.49	-0.47	11.82
C(Ti2)	23	-3.74	8.45	-0.84	8.59
Si(Ti2)	19	-3.27	1.82	-0.07	2.57
Til(C)	19	-0.10	2.53	-0.29	2.65
Ti2(C)	23	-0.02	3.98	-0.10	4.15
Ti2(Si)	21	-0.43	1.88	-0.08	1.96

Si(Ti2) and Ti2(Si) show the lower-surface-energy terminations suggesting higher relative stabilities. We also observe large relaxation energies (E_R) in Si(Ti2) and carbon-terminated surfaces indicating reconstructions.

Previous calculations considering (1x1) surface unit cells show different results which we attributed to the minimal cell size used, which prevent on-plane relaxation. Zhang *et al.* Acta Materialia 55, 4645 (2007).

Equilibrium Geometries

Comparing average bond distances of Si-Ti [from Si(Ti2)] and Ti-C [from C(Ti2)], 2.73 and 1.94 Å, respectively, we confirm the weakness of the Si-Ti bonds.

Stability at High Temperature: MD simulations

- ✓ Constant-temperature ab initio molecular dynamic simulations
- \checkmark Asymmetrical slab with 8-9 monolayers, fixing the two bottommost.
- ✓ T = 800, 1000, 1200, and 1400 °C, over 4 ps with a time step 1 fs.

Snapshot of MD simulations at 1400 °C

The weakness of the Si-Ti bonds as compared with C-Ti provoke large Si displacements inducing surface amorphizationand and desorptions when the Si ML is close to the topsurface

MD simulations at 1400 °C

See animation

Stability at 0K and high temperature

- Si(Ti2) shows low surface energy at 0K, however it is highly unstable at high temperatures, forming a liquid phase at topsurface and desorption event.
- \checkmark Si(Ti2) when located at subsurface induces topsurface amorphization.

Stability at 0K and high temperature

- ✓ Ti1(C) and Ti2(C) although with higher surface energy, show a remarkable thermal stability at high temperatures, preserving their structures up to 1400 °C.
- \checkmark C(Ti1) and C(Ti2) show amorphization features with the formation of C-C covalent bonds.

Atomic structure at high temperature:1400 °C

Atomic structure at high temperature:1400 °C

Well defined peak for C-Ti and C-C, less defined Ti-Ti. Basically crystalline order

Short range order in C-C and C-Ti

C-C bond formation induced by temperature

Surface oxidation by H₂O and O₂ at 0K

- ✓ Two molecules of the same species are released at 3 Å from the surfaces without constraints.
- ✓ On Si(Ti2), H₂O do not react with the surface while O₂ forms SiO species after dissociation. On Ti1(C) and Ti2(Si) both molecules instantaneously dissociate after reaching the surfaces forming a TiO toplayer.

Surface oxidation by H₂O and O₂ at 1400 °C

✓ Snapshots of MD simulations at 1400 °C for H_2O and O_2 molecules reacting with the surfaces.

 \checkmark Si-O species are removed from the Si(Ti2) surface after O₂ dissociative reactions. Meanwhile,

/gg

✓ on Ti2(Si) and Ti1(C), a highly stable TiO toplayer are formed. Oxygen diffusion inside the material is not observed.
La Plata, November 2011

Conclusions

- ✓ Si(Ti2) and Ti2(Si) have the lower surface energy at 0K suggesting stable surfaces.
- ✓ Ti1(C) and Ti2(C) although with higher surface energy, show a remarkable thermal stability, preserving their structure up to 1400 °C.
- ✓ The common association of high surface stability with low surface energy at 0K cannot be extrapolated at higher temperatures.

Thank you!

Stability at High Temperature: MD simulations

- ✓ Constant-temperature ab initio molecular dynamic simulations (NVT ensamble).
- \checkmark Asymmetrical slab with 8-9 monolayers, fixing the two bottommost.
- ✓ T = 800, 1000, 1200, and 1400 °C, over 4 ps with a time step 1 fs.

Total energy variation with temperature for the Si(Ti2) surface under constant thermalization at the chosen temperatures during 1 ps.