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Abstract
We present a systematic implementation of the recently developed Z-method
for computing melting points of solids, augmented by a Bayesian analysis of
the data obtained from molecular dynamics simulations. The use of Bayesian
inference allows us to extract valuable information from limited data, reducing
the computational cost of drawing the isochoric curve. From this Bayesian
Z-method we obtain posterior distributions for the melting temperature Tm, the
critical superheating temperature TLS and the slopes dT/dE of the liquid and
solid phases. The method therefore gives full quantification of the errors in the
prediction of the melting point. This procedure is applied to the estimation of
the melting point of Ti2GaN (one of the so-called MAX phases), a complex,
laminar material, by density functional theory molecular dynamics, finding an
estimate Tm of 2591.61 ± 89.61 K, which is in good agreement with melting
points of similar ceramics.

(Some figures may appear in colour only in the online journal)

1. Introduction

The problem of determination of thermodynamical properties of complex materials via
computer simulation is a challenge for computational materials science. In particular,
determination of melting points of complex substances involves long, expensive first-principles
molecular dynamics (MD) simulations, and in this respect, an efficient procedure to compute
Tm from as few independent simulations as possible would be highly desirable [1]. In this work,
we approach this issue from the point of view of Bayesian statistics, a methodology based on
the computation of probabilities for the unknown parameters of a problem [2, 3]. We develop
a Bayesian version of the recently proposed Z-method [4], in which energy–temperature
points (E, T (E)) obtained from a microcanonical simulation are post-processed to infer the
most probable Tm and TLS together with their respective uncertainties. We apply this new
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methodology to the computation of the melting point of Ti2GaN, an interesting ceramic-like
material, which as far as we know has yet to be measured experimentally.

Ti2GaN is a complex, layered ternary compound which belongs to the so-called MAX
phases. In the search for new structural materials for use in the aerospace, automotive and
chemical industries, MAX phases are gaining importance due to their remarkable combination
of properties, somewhere in between metals and ceramics (i.e. stiff, lightweight and ductile)
[5–7]. MAX phases are made up of an early transition metal M , an element A from the III-A or
IV-A group of the periodic table, e.g. Ga or Ge, and X which is either C or N, in the composition
Mn+1AXn, where n is 1, 2 or 3. The technological interest comes from their mechanical and
resistance properties, as they have the thermal and electrical conductivities of metals but the
elastic rigidity of ceramics. Like metals, they present good electrical and thermal conductivities
ranging from 0.5 to 14 × 106 !−1 m−1, and from 10 to 40 W m−1 K−1, respectively, and
are relatively soft, having Vickers hardness of about 2–5 GPa. Like ceramics, they are
elastically stiff, and some of them, e.g. Ti3SiC2, Ti3AlC2 and Ti4AlN3, also exhibit excellent
high-temperature mechanical properties. They are resistant to thermal shock and unusually
damage-tolerant, and exhibit excellent corrosion resistance. Moreover, unlike conventional
carbides or nitrides, they can be machined by conventional tools without any lubricant, which
is of great technological importance for applications. The need for thermodynamic and
thermophysical data as well as an atomic level understanding of their properties cannot be
overemphasized.

There are, however, scarce experimental measurements and theoretical predictions for
the vast majority of these materials, in particular at high temperatures. For example, even for
Ti3SiC2, the most studied of the MAX phases, which is resistant to oxidation and thermal shock
and capable of remaining strong up to temperature in excess of 1300 ◦C in air, its structural
stability above 1400 ◦C remains unclear [8]. The same lack of information exists about the
melting curve of these materials. Thus, it would be desirable to have reliable high-temperature
information in order to anticipate further applications.

In this paper we chose a particular example among the MAX phases, namely Ti2GaN,
to show how the melting point can be calculated using a state-of-the-art computer simulation
methodology. Recently, ab initio static calculations have been performed in order to predict
their structural and elastic properties [9]. But also ab initio MD calculations should make
it possible to predict other, more complex properties, such as diffusion coefficients and the
melting curve.

The rest of the paper is organized as follows. In section 2, we describe the methodology
for the estimation of the melting curve by computer simulation. Section 2 also presents the
statistical analysis used, based on Bayesian statistics. The results, as well as the details of
the ab initio calculation, are presented in section 3. Finally, in section 4 we draw the main
conclusions of our work.

2. Methodology for computing melting points

In spite of being one of the most ubiquitous and everyday phenomena, a physical explanation
of the nature of melting is still lacking. In the same way, there is no analytical expression
which allows one to predict the melting point of a material. So far, the most popular approach
to estimate the melting point is via computer simulation. Several different methods have
been devised to do so, among them: free energy perturbation [10], thermodynamic integration
[11–13] and the two-phase method [14]. A relatively recent approach to determine the melting
point using MD is the Z-method [4, 15–18], which is a microcanonical one-phase method
based on the superheating effect.
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Figure 1. Schematic representation of the isochoric lines in Z-method simulations. (a) energy–
temperature plane; (b) pressure–temperature plane.

2.1. The Z-method

In microcanonical MD simulation it has been found empirically that, when starting from
the ideal crystalline structure and increasing the total energy at a fixed volume V , there is a
well-defined maximum (for the solid phase), ES(TLS; V ) where TLS corresponds to the limit
of the superheating temperature. Increasing the energy beyond ES by a small amount δE,
the solid spontaneously melts at ES + δE ≈ ES, but due to the increase in potential energy,
namely the latent heat of fusion, the temperature decreases. The interesting fact is that the
final temperature after melting at ES seems to coincide with the melting point Tm obtained
from other methods. Thus, the following equivalence is established in practice.

ES(TLS; V ) = EL(Tm; V ) ≡ ELS. (1)

The procedure for the Z-method computation of the melting point is then as follows: at a
fixed volume, the (E, 〈T 〉) points (where 〈·〉 means average) from different simulations draw a
‘Z’ shape, as shown in figure 1(a), hence the name of the method. Note that one also can draw
the isochore in the pressure–temperature plane (〈p〉, 〈T 〉), as is shown in figure 1(b). In these
Z-shaped curves the sharp inflection at the higher temperature corresponds to TLS and the one
at the lower temperature to Tm. Thus, knowledge of the lower inflection point for different
densities allows the determination of the melting curve for a particular range of pressures.

From figure 1 it can be seen that finding the intersection between the solid and liquid
isochores constitutes a lower bound for Tm. Moreover, as TLS −Tm becomes smaller (pressures
near zero), this lower estimate moves closer to Tm, thus finding the temperature at which the
isochoric line changes slope can be a reasonable estimate of Tm. However, we can do better by
taking advantage of the full set of points in a Bayesian estimation of the parameters defining
the Z-curve, namely TLS, Tm, ELS and the slopes of the solid and liquid branches, related to
the heat capacities of the solid and liquid phases, CS and CL, respectively.

2.2. Bayesian probability

The Bayesian school of statistics [2, 3] extends ‘classical’ (or ‘frequentist’) probabilities, which
are defined as frequencies in repeatable experiments and only applicable to random variables, to
any proposition that can be said to be true or false, including allowed values of unknown (but
not random) parameters. Thus Bayesian probabilities are expressions of human ignorance
about the truth of some arbitrary proposition (for instance, asserting the correct value of a
parameter) rather than immutable properties of random variables. Bayesian probabilities can
(and should) be updated under new information, and that is where Bayes’ theorem enters. It
connects the probability of a certain hypothesis H under study, before and after the acquisition
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of new evidence. This connection is made by means of the likelihood function, which is the
probability of observing the evidence if our hypothesis is indeed true. Formally,

P(H |E) = P(H |I0)P (E|H)

P (E|I0)
, (2)

where H is the hypothesis to be tested, E is some evidence relevant to H , I0 represents our
initial (or prior) state of knowledge, that is before including E, and the notation P(α|β)

represents the probability of proposition α being true, given that proposition β is true. Here
P(H |I0) is the prior probability of H , P(H |E) is the posterior probability of H , and P(E|H)

is the likelihood function. P(E|I0) is the prior probability of the evidence (often referred to
as simply the evidence), and is usually treated as a normalization constant.

Suppose Hk asserts that the unknown parameter x ∈ {x1, . . . , xN } takes the value xk . We
can simply denote Hk by xk and then Bayes’ theorem reads

P(xk|E) = P(xk|I0)P (E|xk)∑N
i=1 P(xi |I0)P (E|xi)

, (3)

where we have determined P(E|I0) from the normalization condition
N∑

i=1

P(xi |E) = 1. (4)

Equation (3) gives us the posterior distribution for the parameter x, which allows us to assert
which regions of the parameter x we believe are the most probable given the evidence E.
Thus, it is a summary of our knowledge of the parameter after incorporating the evidence E.
In section 3 it will be shown how this approach is applied to the melting problem.

2.3. Ab initio MD simulations

An initially crystalline structure of Ti2GaN (symmetry group P 63/mmc) was prepared,
consisting of 96 atoms (48 Ti, 24 Ga and 24 N) and 2 × 2 × 3 unit cells. The lattice
parameters a0 = 3.018 Å and c0 = 13.318 Å were taken from first-principles calculations
by Bouhemadou [9]. The final lengths of the simulation cell were then a = 6.036 Å, and
c = 39.954 Å. This structure was subjected to an ionic relaxation procedure using VASP [19],
the resulting structure is shown in figure 2, left panel. After that, we proceed with the MD
runs at different total energies E.

All MD calculations were performed using density functional theory (DFT) as
implemented in the VASP code. Perdew–Burke–Ernzerhof (PBE) generalized gradient
approximation (GGA) pseudopotentials [20] were used, with an energy cutoff Ec = 300 eV
and the valence wavefunctions expanded at the % point. The time step used for the
Born–Oppenheimer MD was 1 fs.

3. Results

Z-method simulations were performed on the above described 96-atom Ti2GaN system, for
at least 2.5 ps at each simulated energy, and averages were taken over the last 0.5 ps. The
results are shown in figure 3. This plot, in practice, has been obtained as follows: working in
the microcanonical ensemble (E, V, N), we start by assigning a given kinetic energy to the
ideal crystalline structure, corresponding to a total energy E. After a while, following the
equipartition theorem, the system equilibrates, reaching a temperature T (E) (which is usually
around half the initial temperature). If, after a long simulation time (typically hundreds of
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Figure 2. Left, initial crystalline structure of Ti2GaN; right, liquid structure.
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Figure 3. Isochoric curve for Ti2GaN as determined from DFT-MD simulations. The decrease
in temperature around E = −59.92 eV/unit cell signals the melting point. Inset shows the region
around E = −59.92 eV/unit cell, and the error bars correspond to the uncertainties in TLS (upper)
and Tm (lower) computed by the Bayesian procedure.

picoseconds) the system still remains at the average temperature T , then it is in the solid phase
(as shown by the asterisks at E < −60 eV/unit cell in figure 3). If the final average temperature
is lower, then the system melts: the lattice becomes disordered, increasing the potential energy
and therefore decreasing the temperature (asterisks at E > −60 eV/unit cell in figure 3).

Figure 4 shows the radial distribution function (RDF) g(r) for Ti–Ga pairs and the species-
weighted, or total, g(r). The g(r) function for Ti–Ga shows a qualitative change on melting
(the double-peak structure around 4.3 Å is lost in the liquid), and the total g(r) shows clearly
there are atoms in between the original solid layers (2.4 and 3.3 Å).

In order to extract the most information out of the limited number of points (especially
on the region near ELS) and the considerable fluctuations of temperature in the liquid branch,
we developed a Bayesian analysis technique [3] to produce estimations for all the parameters
involved in drawing a Z-curve. Because the novelty of our procedure to obtain the melting
point is not in the Z-method itself, but in the analysis of its results by the Bayesian approach,
we will explain it in detail.

The relevant parameters involved in the drawing of the Z-curve are Tm, TLS, and the slopes
of the solid branch (1/CS) and the liquid branch (1/CS). These four parameters are sufficient
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Figure 4. RDFs for Ti–Ga pairs (upper panel) and all pairs (lower panel) for both liquid
(T ≈ 4000 K) and solid (T ≈ 1000 K) phases.

as the superheating energy ELS is completely fixed by knowing TLS and CS, by means of
the relation

ELS = &0 + CSTLS, (5)

where &0 is the potential energy of the initial ideal structure, which is known in advance
exactly. We then construct the posterior distribution P(Z|{Di}) where Z represents the four-
tuple Z = (TLS, Tm, CS, CL) and {Di} is a set of measured points Di = (Ei, Ti) obtained from
the MD simulation. These are the points one usually joins ‘by hand’ to draw the best Z-curve.
In order to obtain the posterior distribution, and therefore, what are the best parameters Z as
suggested by our measured points, we need the likelihood function P({Di}|Z), that is, the
probability of measuring these points exactly given a hypothetical set of parameters Z. For
this, we need to make some assumptions about the measurement errors.

We assume normally distributed errors for the measurements of both E and T , with
standard deviations σE and σT , respectively. Despite the simulations being microcanonical,
there is a small (compared with the fluctuations in temperature) numerical error in the total
energy, which is taken as σE .

As both axes T and E now are subject to experimental error, the usual least-squares
procedure is not strictly valid [21]. In order to construct the likelihood function for the data
points, we write the probability of measuring a single pointDi given that the real point (E, T (E))

belongs to the solid branch (S), liquid branch (L), or is a mixed point (M), that is, a point for
which melting happened during the ‘averaging’ phase of the simulation, thus resulting in a
temperature in between Tm and TLS. For the case of the solid branch, we have

P(Di |Z, bi = S) ∝
∫ ELS

&0

dEN
(

Ti;
E − &0

CS
, σT

)
N (Ei; E, σE), (6)

where

N (x; µ, σ ) = 1√
2πσ

e− 1
2σ2 (x−µ)2

(7)

is the normal distribution and the notation P(Di |Z, bi = S) should be read as the probability
of observing the ith point given that the Z-curve parameters are Z and the ith point belongs
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to the solid branch. Similarly, for the case of the liquid branch,

P(Di |Z, bi = L) ∝
∫ ∞

ELS

dEN
(

Ti; Tm +
E − ELS

CL
, σT

)
N (Ei; E, σE). (8)

For both cases (solid and liquid branches), the probability of measuring Di if the
corresponding real point (E, T (E)) belongs to a specific branch (denoted by b) is given, after
integration and proper normalization, by the form

P(Di |Z, bi = b) = N (Ei, E
′ + C ′Ti; S)

T ′

(
F(αi; β+, γS) − F(αi; β−, γS)

)
, (9)

where

F(X; µ, σ ) =
∫ X

0
dxN (x; µ, σ ) = 1

2

(
1 + erf

(X − µ√
2σ

))
(10)

is the cumulative distribution function (CDF) for the normal distribution, and the following
definitions were made for simplicity of notation.

αi = C ′Ei + γ 2Ti, (11)

β+ = C ′(E′ + CT ′) + γ 2T ′, (12)

β− = C ′E′, (13)

γ = σE/σT , (14)

S = σT

√
C ′2 + γ 2. (15)

In defining these quantities we have let, for the solid branch, C ′ = CS, E′ = &0 and T ′ = TLS,
whereas for the liquid branch C ′ = CL, E′ = ELS and T ′ = Tmax − Tm.

Finally, for the case of a mixed point,

P(Di |Z, bi = M) ∝ N (Ei; ELS, σE)

∫ TLS

Tm

dT N (Ti; T , σT ) (16)

which reduces, after integration and normalization, to

P(Di |Z, bi = M) = N (Ei; ELS, σE)

TLS − Tm

(
F(Ti; TLS, σT ) − F(Ti; Tm, σT )

)
. (17)

We used simple, flat priors for the parameters, just imposing the consistency conditions
for them to represent a valid Z-curve, namely

Tm < min(TLS, T
−

L ), (18)

TLS > max(Tm, T +
S ), (19)

E+
S < ELS < E−

L , (20)

which, when considered together, lead to the full prior

P(Z|I0) = *(min(TLS, T
−

L ) − Tm) × *(TLS − max(Tm, T +
S ))

×*(ELS − E+
S) × *(E−

L − ELS), (21)

where *(·) is the Heaviside function, (E+
S , T +

S ) is the highest measured point of the solid
branch (minus three standard deviations in both axes to account for the measurement error)
and (E−

L , T −
L ) is the lowest measured point of the liquid branch (plus three standard deviations

in both axes). That is, these points are taken from the data as a lower bound for (ELS, TLS)

and a higher bound for (Em, Tm), respectively. Note that we are using just the extreme values
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Figure 5. Posterior distribution for the melting temperature P(Tm|{Di}) as obtained from the
DFT-MD simulations.
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Figure 6. Posterior distribution for the critical superheating temperature P(TLS|{Di}) as obtained
from the DFT-MD simulations.

from the data to construct the prior, but these extreme values could come from other sources
(for instance empirical data, thermodynamic considerations and so on). So, this is not an
uninformative prior, however any redundancy between the information included in the prior
and the one included in the likelihood function cannot distort the inference process [22].

Application of Bayes theorem (equation (2)) then gives the posterior distribution for the
four-tuple Z,

P(Z|{Di}) = P(Z|I0)

P ({Di}|I0)

N∏

i=1

P(Di |Z, bi), (22)

where bi is the corresponding branch for the ith point (one of S, L, M), which we can
determine by simple inspection of the instantaneous temperature or the dynamical properties
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Figure 7. Posterior distribution for the superheating energy P(ELS|{Di}) as obtained from the
DFT-MD simulations.
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Figure 8. Posterior distribution for the solid heat capacity P(CS|{Di}) as obtained from the DFT-
MD simulations.

of the final sample. The posterior distribution for each of the parameters, shown in figures 5–9
was sampled numerically via a Metropolis–Hastings Monte Carlo (MC) algorithm [23] and
histograms were collected during 2 × 105 MC steps (see tables 1 and 2).

The calculated posterior estimate for the melting point is Tm = 2591.91±89.61 K, which is
close to values found in ultra-high-temperature ceramic (UHTC) composites [24], for instance,
SrZrO3 with 2327 K, TiN with 2677 K, TiC with 2827 K and TiB2 with 2952 K.

Quite purposely we have not dealt with corrections to the Z-method due to the limited
number of atoms or time steps in the simulation, which for small systems could be the largest
contributions to error. The Bayesian procedure described here is intended as a complementary
tool once corrections to finite-size and finite-time effects are in place. It is well known [15, 25]
that increasing the duration of each MD simulation should decrease the obtained values of
both TLS and Tm, and in this sense, every Z-method estimation of Tm should be taken as an
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Figure 9. Posterior distribution for the liquid heat capacity P(CL|{Di}) as obtained from the
DFT-MD simulations.

Table 1. Interval estimations obtained from the posterior distributions for TLS, Tm and ELS. The
error bar has a width of one standard deviation (approximately 68% confidence).

Tm (K) TLS (K) ELS (eV/unit cell)

2591.91 ± 89.61 2721.87 ± 57.32 −59.94 ± 0.01

Table 2. Interval estimations obtained from the posterior distributions for CS and CL. The error
bar has a width of one standard deviation (approximately 68% confidence).

CS (kB/atom) CL (kB/atom)

3.02 ± 0.06 3.05 ± 0.53

upper bound for the ‘real’ Tm (in the thermodynamic limit and for infinite simulation time).
These limitations can also be present in two-phase simulations, and they should be dealt with by
extrapolation using different sizes and simulation times (if possible, according to computational
requirements). Although this calculation is then a preliminary estimation, this result is the first
(to the best of our knowledge) prediction of the melting point for this complex ceramic, and
it can be useful as a hint for a ‘search space’ to explore in future Z-method simulations with
larger sizes and simulation times.

4. Concluding remarks

We have obtained an estimation for the melting point of Ti2GaN, a complex material
belonging to the so-called MAX phases, by means of first-principles microcanonical one-phase
simulations (the recently developed Z-method), improved with a novel Bayesian methodology
to infer the parameters of the Z-curve (together with their uncertainties) from molecular
dynamics data. The melting point thus obtained agrees quite well with those of other traditional,
high-temperature ceramics, around 2600 K, particularly close to TiN with 2677 K.

The Bayesian Z-method proposed here should be applicable (and especially suited) to
systems under non-negligible thermodynamic fluctuations, which is the case for ab initio
simulations with under a hundred atoms.
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[12] Alfè D, Price G D and Gillan M J 1999 Nature 401 462
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