

An atomistic approach to materials: structure of glassy alumina and the mechanical response of copper

Gonzalo Gutiérrez,

NanoM

Grupo de NanoMateriales,

Departamento de Física, Facultad de Ciencias,

Universidad de Chile

gonzalo@fisica.ciencias.uchile.cl

www.gnm.cl

Université Paris-Sud, Orsay, Jan. 30, 2013

Grupo de NanoMateriales, U. de Chile

www.gnm.cl

•Profs: Eduardo Menéndez, Sergio Davis, Gonzalo Gutiérrez

•Postdoc: Emilio Figueroa, Germán Miño

Postgraduate students: F. González, Y. Navarrete, N. Amigo, E. Sánchez

•Approx. 10 undergrad per year

Collaboration in Chile and abroad

Atomistic simulation

GNM: Research areas (www.gnm.cl)

- 1. Foundations of statistical mechanics:
- a) melting theory
- b) Information theory and bayesian probability
- c) non-extensive statistics
- 2. Material science
- a) glasses: structures, dynamical and mechanical properties
- b) nano-structured materials: carbon nanotubes
- c) materials under extreme conditions
- d) Mechanical properties of metals
- e) solar cell materials: electronic and optical properties (ab-initio)
- f) nuclear materials: radiation damage
- g) Biological systems: molecular simulation
- 3. Computer simulation techniques
- a) Computer programming: Las Palmeras Molecular Dynamics, www.lpmd.cl (Computer Physics Communications, 181(12):2126 – 2139, 2010)
- b) Free energy and entropy
- c) Algorithms for MD and MC: mpi, CUDA

Outline

- Molecular dynamics simulation
- Amorphous Al₂O₃ by ab-initio MD
- Mechanical properties of copper by classical MD

Molecular Dynamics simulations

Basic diagnostics

- Pair distribution function
- Angular distribution
- Coordination numbers

Average over positions, velocities and accelerations

 Vibrational density of states *D(w)*

$$Z_{\alpha(\beta)}(t) = \left\langle \sum_{i=1}^{N} m_{i\alpha} \vec{v}_{i\alpha}(0) \cdot \vec{v}_{i\alpha}(t) \right\rangle \quad \text{VACF}$$

$$\mathcal{D}_{\alpha(\beta)}(\omega) = \frac{1}{\sqrt{2\pi}} \int \frac{Z_{\alpha(\beta)}(t)}{Z_{\alpha(\beta)}(0)} \exp\left(-i\omega t\right) dt$$

Direct visualization

Structural, elastic, vibrational, and electronic properties of amorphous Al₂O₃ from ab-initio calculation*

Ceramic material with several technological applications due to high melting point (2327 K), extreme hardness (Moh 9) y low electrical conductivity

Structural phase transitions

liquid $\rightarrow \gamma \rightarrow \delta$, $\theta \rightarrow \alpha$ -alumina amorphous (a.o) $\rightarrow \gamma \rightarrow \theta \rightarrow \alpha$ -alumina

amorphous alumina? Not many experimental results

* S. Davis, G.G., J. Phys.: Condens. Matter 23, 495401 (2011)

Procedure

 Combined use of classical an *ab initio* Molecular Dynamics:

Computational details

- ab initio MD by using VASP (Vienna Ab Initio Simulation Package)
- Density Functional Theory with LDA (local density approximation)
- Ultrasoft pseudopotentials
- Energy cutoff E_{cut} = 296,77 eV (21,81 Ry)
- Only gamma point, $\Gamma = (0,0,0)$
- Time step of 3 fs for atomic motion

Amorphous Al₂O₃

S. Davis, G. G,

Structural, elastic, vibrational, and electronic properties of amorphous Al_2O_3 from ab-initio calculations

J. Phys.: Condens. Matter 23, 495401 (2011)

Neutron static structure factor: experiments and simulation

Exp.: P. Lamparter, R. Kniep, Physics B **234**, 405 (1997)

Interatomic distances and coordination numbers

Results	R _{Al-Al} (Ă)	R _{Al-O} (Ă)	R ₀₋₀ (Ă)
Lamparter y Kniep	3,2 ± 0,55	1,8 ± 0,21	2,8 ± 0,58
Cassical MD	3,24	1,74	2,77
ab initio MD	3,27	1,80	2,91

Results	n _{Al-Al}	n _{Al-O}	n _{O-Al}	n _{O-O}
Classical MD	9,1	3,97	2,65	16,85
ab initio MD	8,9	4,49	2,99	16,46

Connectivity between basic units

Orsay, Jan 2013 / Gonzalo Gutiérrez, U. de Chile

15

Vibrational density of states

Elastic properties

Electronic density of states

Electronic density of states: comparison to γ-alumina

γ-Al₂O₃ Exp: B. Ealet et al. Thin Solid Films **250**, 92 (1994) Theory: GG, A. Taga. B. Johansson, Phys. Rev. B **65** 012101 (2002) GG, E. Menéndez, Phys. Rev. B **72** 035116 (2005)

Electron localization function

Charge transfer calculated via Voronoi analysis: Al ~ 2.89 O ~ -1.92

Different alumina phases

Phase	Density	Al Coordination	Bond length	
	g/cm ³	Number	Al-O (A)	
amorphous ^b	3.17	4(76%), 5 (22%)	1.76	
	3.9	4(23%), 5(51%), 6(21%)	1.77	
	4.2	4(15%), 5(21%), 6(64%)	1.79	
a, ab-initio ^d	3.17	4(50%), 5(42%), 6(5%)	1.81	
liquid ^a	3.17	3(13%), 4(66%), 5(20%)	1.76	
gamma ^e	3.66	4(37%), 6(63%)	1.94 +/- 0.3	
theta	3.65	4(50%), 6(50%)	1.9 +/- 0.3	
alpha	3.98	6 (100%)	1.97	

Our results: a) PRE **61**, 2723 (2000),

b) PRB 65, 104202 (2002), unpublished (2008)

c) PRB 65, 012101 (2002), PRB, 72, 035116 (2005)

d) J. Mat Sc. 45, 5124–5134 (2010);

J. Phys.: Condens. Matter 23, 495401 (2011)

Conclusions

- Using of ab-initio MD appear new features, absent in (simple) empirical interatomic potential
- The building blocks of the system are AIO₄ and AIO₆
- The connectivity of this units is both by the corners (majority) and by the edges (minority)
- The v-DOS present two bands. The low frecuency band is related to the inter-unit vibrations, and the high band to the intra-unit vibrations
- B = 193 GPa, the lower of all polymorph
- The e-DOS is similar to the one of the crystalline γ $Al_2O_{3,}$ with a gap of $\ 2.9 \ eV$

Mechanical properties copper: atomistic simulation

(work in progress)

N. Amigo, GG, M. Ignat

(in the framework of IM2-U. Chile project: M. Ignat, A. Valencia, G. Gutiérrez, S. Davis)

Copper Project

Miguel Ignat: Análisis propiedades mecánicas Docteur Ingenieur (1977), Docteur en-Sciences (1983) Determinación de CODELCO Orguilo de Todos Propiedades Mecánicas de Productos de Cobre Álvaro Valencia: Análisis Termodinámico - Dr-Ing. Ruhr-Universität Bochum, Alemania, 1993. Proyecto CODELCO-IM2 36-11 Responsable de Proyecto: M.Ignat Marzo 2012 Atomística Termodinámica Muestreo Gonzalo Gutiérrez: Modelización Atómica - Doctor en Ciencias con Mención en Física, P. Potencial Reactividad Validación Universidad Católica de Chile, 1997 Interatómico Fisher Statistics Propiedades Mecánicas Sergio Davis: Estadística de Muestreo - Ph.D in Applied Material Physics, Royal Institute of Trazabilidad Technology (KTH), Estocolmo, Suecia (Septiembre 2009)

From Cathodes to wires

Experiments: M. Ignat + Alice Moya and Tomás Jil

mechanical test + analysis \rightarrow effects of impurities

Tensile test: stress-strain curves

Atomistic simulation in Cu

Goal:

to study the effect of impurities in the mechanical behavior of copper, at an atomic level. In particular Ag, As, Fe, Pb, S y Cu_2O

a) how does the strain-stress curve change due to impurities?

 b) what are the relationship between mechanical properties, impurities and microstructure (grain boundary)?

Methodology

Classical molecular dynamics Interatomic potential: embedded atom (many body effect) Programs: LAMMPS / LPMD (our own code) Thousand and millions of particles

So far: Elastic properties Strain-stress curve -monocrystal -polycristal

Mono-crystal (T = 0 K)

- 660 000 atoms
- 361 [Å] long
- 144 [Å] heigh and width

Elastic constants

$$c_{ijkl} = \frac{\partial \sigma_{ij}}{\partial \varepsilon_{kl}}, \quad (i, j, k, l = x, y, z)$$

(Elastic properties of the bcc structure of Bismuth at high pressure,, G. Gutiérrez, E. Menéndez-Proupin, and A. K. Singh, Journal of Applied Physics 99, 103504 (2006))

Constant	Exp [Gpa]	Simulation [Gpa]
C ₁₁	176.2	171.0
C ₁₂	125.0	126.3
C ₄₄	82.0	79.9

Copper poly-crystals

- 1.3 million atoms
- 20 grains
- 722 [Å] long
- 140 [Å] h and w

- 20 million
- 20 grains
- 614 [Å] edge

Poly-cristal

- 1.3 millones de atoms
- 20 grains (~10-15 nm diameter)

- 720 [Å] l
- 144 [Å] h and w

Strain-stress test

Zoom at small strain

Cu and Cu-Ag

System 1: pure Cu

- Cu poly-crystalline cilindrical shape
- 125 grains
- 500 000 atoms approx.
- Long: 470 [Å], radius: 65 [Å]

System 2: Cu-Ag

- same as system 1

- Ag interstitial impurities, at concetration of 1.64% (w/r to the total number of atoms)

Strain-stress curve

Composición	E [CDa]				6
composition	E [GPa]	Oelas[IVIPA]	o _{ult} [iviPa]	of[iviPa]	٤f
Cu	62.4	1292.7	2924.3	1740.3	0.57
Cu-Ag	67.4	1464.9	3081.4	1876.5	0.49

Conclusions (preliminary)

- The strength of poly-crystalline copper increases when Ag interstitials atoms are present

- the tensile strength also increases

- Ag impurities results in a decreases of ductility in Cu.