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Conjugate variables in continuous maximum-entropy inference
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For a continuous maximum-entropy distribution (obtained from an arbitrary number of simultaneous
constraints), we derive a general relation connecting the Lagrange multipliers and the expectation values of
certain particularly constructed functions of the states of the system. From this relation, an estimator for a
given Lagrange multiplier can be constructed from derivatives of the corresponding constraining function. These
estimators sometimes lead to the determination of the Lagrange multipliers by way of solving a linear system,
and, in general, they provide another tool to widen the applicability of Jaynes’s formalism. This general relation,
especially well suited for computer simulation techniques, also provides some insight into the interpretation
of the hypervirial relations known in statistical mechanics and the recently derived microcanonical dynamical
temperature. We illustrate the usefulness of these new relations with several applications in statistics.
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I. INTRODUCTION

Statistical mechanics aims at explaining the physical prop-
erties of a macroscopic system from the basis of the dynamical
properties of its microscopical constituents, for this relying
strongly on the foundations of statistics.Several interpretations
of the formalism produced by statistical mechanics have arisen.
In particular, a Bayesian interpretation of statistical mechanics
(and therefore of thermodynamics) was proposed by Jaynes [1]
in 1957. In this interpretation, the probability assigned to a
microstate X represents our degree of belief attached to the
logical proposition “the physical system is in the microstate
X” and the information entropy S(Fi, ..., F,,) quantifies our
missing knowledge about the unknown microstate, given
m macroscopic properties F, ..., F,. Maximization of the
entropy subject to agreement with macroscopic observables
leads naturally to the canonical, grand-canonical, and micro-
canonical probability distributions.

The virtue of the Bayesian viewpoint is the realization of
the following: The maximum entropy (MaxEnt) formalism is
a separate entity from thermodynamics; it is the most unbiased
procedure for assigning degrees of belief to propositions,
while being compatible with testable information. MaxEnt is,
therefore, applicable in any branch of science where there is
not enough information to decide among different competing
hypotheses [2]. Moreover, the rationale of MaxEnt does not
need to rely on its lack of bias (which might appear as
a “subjective” quality), as the formalism has been recently
recovered [3] only from axioms of logical consistency. It is not
even necessary to invoke the concept of missing information
to arrive at the same formalism [4].

Although several advances have been made in the fields
of Bayesian inference since the seminal work of Jaynes [1]
to the present day, there are still many aspects to explore,
particularly in the case of a continuous maximum entropy
distribution. For example, a recurrent problem is the evaluation
of the Lagrange multipliers appearing in the Shannon-Jaynes
entropy maximization procedure, which amounts to solving a
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system of nonlinear equations and, in most cases, has to be
done numerically.

In this paper, we introduce a new identity (to the best of
our knowledge) relating the expectation value of an arbitrary
trial function to the values of Lagrange multipliers appearing
in a MaxEnt continuous inference problem. This identity
allows us to derive, for instance, the so-called hypervirial
relations [5] of statistical mechanics as well as the recently
proposed dynamical temperature [6,7], for the microcanonical
ensemble, as particular cases, revealing the physics behind it.
The dynamical temperature, a microscopic expression for the
temperature of a continuous Hamiltonian, is now widely used
in computer simulations of liquids [8] and proteins [9].

The paper is organized as follows. In Sec. II we review
the MaxEnt formalism with continuous degrees of freedom.
In Sec. IIT we derive a general relation which can be used
to construct estimators of the Lagrange multipliers involved
in continuous MaxEnt. In Sec. IV we recover several known
relations from statistical mechanics, as well as others, as far
as we know, not previously reported. Section V applies the
relations derived in this work to MaxEnt problems within and
beyond statistical mechanics.

II. THE CONTINUOUS INFERENCE PROBLEM

Consider a set of N variables or degrees of freedom
(x1,...,xy) (denoted collectively by X) subjected to uncer-
tainty according to an initially assigned probability distribution
7(X) (the “complete ignorance” prior, in Bayesian terms).
Suppose we want to revise this probability in light of new
testable information, given in the form of m known expectation
values (f;(X)) = F; (where i = 1, ...,m) finally producing a
new probability distribution P(¥). The updating procedure
involves the maximization of the Shannon-Jaynes entropy
(which is the negative of the Kullback-Leibler divergence
(10D,

o e PO
S[P(x),m(x)] = —/de(x)ln —_—, )
(x)
under the m constraints, which can be written compactly as a
single vector constraint, f X)) = F.
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The unique solution to this problem is

1 s
P(X)= —=—e " Wn(), 2)
Z0 (x) (
where the partition function Z is given by
Z() = / din(B)e @ 3)
and the vector of Lagrange multipliers A= Ay ey A) 18
implicitly given as the solution of
- 9 -
F=——=ImnZ®). “)
A
Alternatively, X can be also obtained [2] from
- AS(F
=250 )
oF

which can be recognized in the case of thermodynamics as the
“definition” of temperature, dS/0E = §.

Note that the symmetry between Eqs. (4) and (5) is due
to the fact that In Z and S are connected via a Legendre
transformation,

In this sense, the components of A are conjugate to the
corresponding components of F.1In thermodynamics, such
pairs are common: For instance, internal energy U and
temperature 8, volume V and pressure P, number of particles
N and chemical potential p.

Equation (5), however, is usually impractical in analyt-
ical terms, as it requires knowledge of the entropy S as
a function of the known expectation values. It would be
extremely practical to construct estimators )A»k()?l, ..., Xxp) for
the Lagrange multipliers A; in order to avoid solving Eqs. (4)
or (5) explicitly. Note, however, that this assumes we have
access to a sample of n points X (microstates, in the context
of statistical mechanics) drawn from the original distribution.
Fortunately, such a situation occurs frequently in the context of
standard computer simulation techniques such as Monte Carlo
and molecular dynamics.

Better yet, the existence of an estimator ik with the
particular form (A;(X)) = A puts the Lagrange multiplier Ay
as an observable (that is, a quantity that can be obtained as an
expectation) which is conjugate to f; in the MaxEnt problem.

In the following, we present an expression which will allow
us to evaluate A in a more practical way.

III. AN IDENTITY CONCERNING THE
LAGRANGE MULTIPLIERS

In order to obtain a direct expression for A we proceed in the
following manner. First, we imagine a surface ¥ defined by
the condition B(X) = By, with B a differentiable function of
N variables. The surface ¥ encloses a volume V, such that for
points in V, B(X¥) < By. Now consider the expectation value
of a quantity (until now arbitrary) A(X) inside V, where the
expectation is taken using the updated distribution P(X),

(AD);y = é / din(@De D AR), (7
Vv
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Suppose A is the divergence of a vector field v,
ARX) =V - 0(%), )
and denote
u@@) = (@) I, )

We can apply the divergence theorem,

/dzuv.a=/dzﬁ.uﬁ—/dzﬁ.w, (10)
\%4 > \%

where, in this case, i = %. This leads to

R 1 - 2/(0-VB
(V-0);y = _/ dxef (2
* Z s |VB|

+ l/ die  @EATR) -5 — V) - 1],
ZJy

where J denotes the Jacobian matrix, J; ; = df;/dx;. The
surface integral on the right-hand side can be expressed in
terms of a Dirac § function,

/ dEeJ"f <1_)) . VB)
b |VB|

- /din(z)e—”(S(Bo —B®)5-VB. (1)

Using that

d -
O(By — B(x)),

8(Bo — B(x)) = 0B,

we finally arrive at

- S L - a .
(V-v—(JTA)-v—i—v-Vlnn(x))x’V:ﬁ(v-VB);\,V,
0

12)

where the left-hand size includes A explicitly. This last result,
Eq. (12), should be valid as long as B is differentiable and
J exists. In particular, if we take V to represent the whole
volume (i.e., we take By large enough so B(X) < By for all X),
then the right-hand side vanishes, and we obtain

(V-3); = (@70 5= 3 Vinr(¥));. (13)

Equations (12) and (13) are the main results of this paper,
and they will, in the following, be jointly referred to as
the conjugate variable theorem (CVT). The CVT connects
expectation values involving the prior probability (X), the
Lagrange multipliers A, and the Jacobian of the functions used
as constraints in the MaxEnt problem by means of an arbitrary
“trial” vector field 9. It can be seen that Eqgs. (12) and (13) are
linear in X, so with a proper choice of m different functions
v;(X) the problem of determination of Lagrange multipliers
can be written as the following m x m linear system,

(V-3 + 0 - Vinm) =Y A0 - V), (14)
j=1

where, for simplicity, the equivalence
I ="MV fi (15)

k=1
was used.
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In practice, in order to be able to solve this system, we
need to compute the matrix elements A;; = (v; - V f;) and
the elements of the column vector b; = (V - U; +v; - Vinm),
which are implicitly dependent on A through the probability
distribution itself. The success of Eq. (14) as a method for
the determination of A relies on being able to compute any
expectation value (which is possible if we have a large enough
sample of the microstates {X} for averages to converge to
expectation values, for instance, from molecular dynamics or
Monte Carlo data) or, alternatively, to adequately choosing
the trial functions v; so A; ; and b; reduce to either constants
or known functions of the F;. This means Eq. (14) does not
constitute a universally valid replacement for Eq. (4). It is still
applicable, however, in other cases, particularly as an identity
relating expectation values and for constructing estimators of
A, as we will describe in the following sections.

The theorem just proved [Eq. (12)] resembles the well-
known fluctuation-dissipation theorem in thermodynamics
[11,12],

2 oE
(H-E)) = B (16)
where E = (H). This relation connects the equilibrium fluc-
tuations of energy in a system and the nonequilibrium linear
response relaxation of the system. However, as shown by
Jaynes [2], the theorem is simply a consequence of MaxEnt
and, therefore, is valid outside thermodynamics in the form

G

(gfi) —GF, = _E)_Ak

, (17)
where g(¥) is an arbitrary function and G = (g). For a single
constraint and setting g = f, we get the usual form,

oF
or’
from which follows Eq. (16) as a particular case. The
fluctuation—dissipation theorem can be combined with the
CVT as shown in the third example of Sec. V.

It is interesting to note that the condition of maximum
entropy subjected to constraints is mathematically equivalent
to the condition of validity of the CVT (i.e., CVT holds if and
only if the distribution P has the MaxEnt form). To prove this,
consider Eq. (13) in the context of an arbitrary probability
distribution P(¥), not assumed to be of the MaxEnt form.
Apply the substitution ¥ = @8(X — xp) with @ an arbitrary
constant vector. We have

& (VS(X —xp) =@ - <5(£ — fo)<2 MV fie — Vin 7r>>

k

(f = F)) =— (18)

19)

where now the expectation is taken over the arbitrary proba-
bility distribution P.

As Eq. (19) must be valid for any choice of @, we can drop
out @ from both sides of the equation and, using the identities,

(g(X)8(X — X)) = (o) P(xp), (20)
for g an arbitrary function of X and
(V8(X — X)) = =V P(xp) 21
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we obtain

VP(X) _ - .
F i) = ;Akak(onVInn(xo). (22)

This last expression can be written as
V(ln P(xp) + Z A fr(xo) — 1H7T(fo)> =0, (23)
k

from which it follows that
ﬁ()?o) X 7'[()?0)@_ I )»kfk(fo)' (24)

In other words, P must be a MaxEnt solution (or, in
Fisher statistics, P must have sufficient statistics, see the
Pitman-Koopman-Darmois theorem [13—15]). Therefore, we
have proved that Egs. (2) and (13) are equivalent, in the sense
that one implies the other. The same kind of equivalence can
be proven in a straightforward way between the fluctuation-
dissipation theorem [Eq. (17)] and Eq. (2) by using g =
8(X — xp).

IV. APPLICATIONS

From the above Eqgs. (12) and (13) it is possible to derive
several particular cases known in statistical mechanics, as well
as new relations, as far as we know, not previously reported
and applicable to other problems of maximum entropy outside
physics. Here we explore the case of a single constraint and its
particular cases. .

For the case of f(X) being a simple scalar f(X), the
Lagrange multiplier A is given directly by using Eq. (13) [or,
equivalently, Eq. (14)] withm =1,

AZ(V%}:{—U-Vlnn),\. 25)
(v-Vfh

Furthermore, if the ignorance prior r is flat, i.e., Vx| =0,

then

V-v
AL (26)
(v-Vfh
Choosing v = é;x jand f = H, thisreduces to the so-called
hypervirial relations in statistical mechanics [5,16],
oH
i = Blx;,— ).
ki '3 < J 3xk >
In this context it is clear that this formula, related to the
equipartition of energy, is only one of many possible estimators
for the inverse temperature 8, which is, of course, the Lagrange
multiplier in the canonical distribution,

27)

P(T) = e PHD), (28)

Z(B)

On the other hand, if we choose ¥ = @/(@ - V f) with @,
an arbitrary vector such that @ - V f never vanishes [Eq. (26)]
reduces to

x=<v. 2 > (29)
A

12}
o-Vf

In the context of microcanonical statistical mechanics [17],
(H) = E is given as a constraint, that is, f = . Choosing
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o = V'H, we obtain

VH
B = <V . W>E’ (30)

which is Rugh’s expression for the dynamical temperature [6].
This new observable, constructed from the derivatives of the
Hamiltonian, is widely used in computer simulation, either for
monitoring the instantaneous temperature and the approach to
equilibrium in a molecular simulation [18] or as a thermostat
allowing the implementation of molecular dynamics in the
canonical ensemble [19]. It has also led to the insight that spin
degrees of freedom [20], whose Hamiltonian lacks a kinetic
energy term, can have a dynamical temperature associated to
them as well. Microcanonical temperature has also been used
in the context of Yang-Mills models [21] and Bose systems
[22]. For a complete review of the importance of dynamical
temperature, see Ref. [23].

In general, from Eq. (29) we can define a family of
estimators

-

w

A=V. =
w-Vf

€2y

such that its expectation value (1) corresponds to the value of
the Lagrange multiplier A. Therefore, Eq. (30) is only one such
estimator of the inverse temperature. In fact, Rickayzen [7]
found Eq. (31) from particular properties of the microcanonical
ensemble.

In a Bayesian formulation, the fact that the observable A has
a family of definitions given by Eq. (31) is reasonable and far
from being controversial. If, however, we assume that there is
an intrinsic property A(X) of the microstate, independent of the
observer doing the inference, we should expect the function X
to be unique, and then Rickayzen’s expression [our Eq. (31)]
for the inverse temperature is difficult to reconcile with this
assumption.

Let us make a general point about the estimators of A
given by Eq. (31). Any estimator A from this family serves
as a conjugate function to f(X), in the same sense that A
is a conjugate quantity to F. Notice that, in one dimension
(X — x) there is only one possible estimator [as w(x) cancels
out of Eq. (31)],

N f//(x)
A = — .
==y

This is also valid if in Eq. (31) we take &, having a single
nonzero constant component wy, the estimator then reduces to

O f/ox;
@f /0x0)?

This fact hints towards a geometrical interpretation of the
conjugate A as some kind of curvature of f(X) along the
particular direction @. Notice also that the magnitude of A (seen
as a Lagrange multiplier in an optimization problem) is related
to the “strength” of the constraint {f) = F. In information-
theoretical terms, the more informative the constraint is, the
larger the absolute value of A.

A practical question is how these different estimators A
compare to each other in terms of accuracy. In order to evaluate
this, we can use the concept of statistical efficiency e[A], given

(32)

(@) = — (33)
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A 1

e[\l = —— < 1, 34
. Ir(M)o?[A] G
where 02[5\] = (()A\ — k)z) is the variance of the estimator,
Ir(A) is the Fisher information, given by

9 R 2
Ir(M) =<(ﬁlnP(x)> >= ((f = F)», 35)

and the inequality is known as the Crdmer-Rao bound. In
physicists’ terms, an estimator is more efficient (accurate)
if it has fewer fluctuations around its average value, and
the smallest value of the fluctuations corresponds to the
Fisher information. This optimum is attained by the maximum
likelihood estimators.

In our context, by using v = gV f/|V f|* in Eq. (26), g an
arbitrary function of ¥, we arrive at

A Vg-Vf
r(g) — (rg) < VT2 > (36)

Choosing g = A, we get an expression for the variance of

the estimator,

Vi - Vf> a7

2ry [y
= < Ve

This allows the determination of the efficiency of the
estimator associated with any particular substitution of @.
From the upper bound of Egs. (34) and (37) it follows that
the most efficient choice of @ (i.e., the one leading to the
maximum likelihood estimator) should satisfy

Vil@] -V f> _
IV£I?
Interestingly, if the estimator A depends on X only through

f itself, i.e., )A»(?c) = )A»( f(%)), we then obtain a “fluctuation—
dissipation” relation for A,

((f - F)2>< (38)

R )
(=) = —<§> (39)

analogous to Eq. (18).

V. SOME ILLUSTRATIONS OF THE USE OF THE CVT

A. Recovering the normal distribution
Consider a continuous variable x with known mean A and
variance B. The MaxEnt distribution P(x|A, B) should have
the form

P(x|ha,hp) = e har—hpx? (40)

Z(has2p)

We wish to determine A4 and Ap in terms of A and B,
without employing Eq. (4) or the maximum likelihood method.

We can recover the usual estimators for A 4 and A 5 just from
the CVT, without solving an optimization problem, as follows.
The constraints imposed on the mean and variance lead to the
functions f4 = x and fz = x2. We can write two different
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versions of the CVT, using trial functions v; and vy,

i) = A (i) fR0) + Ap (i) fp(x)),  (41)
(V3(0)) = Aa(V2(x) (X)) + Ap(v2(x) fp(X)),  (42)

obtaining a system of linear equations that can be solved for
A4 and Ap in terms of some particular expectation values. We
expect that some choice will put everything in terms of known
quantities such as A, B and constants. Let us choose v, (x) = 1
and v,(x) = x; we then get

0=2Xs+215A, (43)
1 =AsA+22pB. (44)
Solving for A4 and XA, we obtain
A
)‘A = _mv (45)
1
Ap = ————, 46
5= 58— A (46)

which are precisely the maximum likelihood estimates. This
can be seen by calling B — A% = (x?) — (x)> = S? and A =
(x) = X and replacing the estimates for A4 and Ap in the
MaxEnt solution [Eq. (40)],

P(x|X,S) = et T, 47)

Z(X,S)
Completing the square in the exponential, we get precisely
the normal distribution (albeit without the normalization
constant, which can be obtained as usual by integration),

P(x|X.S) = e W WX’ (48)

n(X,$)

x2
where n(X,S) = Z(X,S)e 2.

B. A single power-law constraint

Consider a continuous variable x with known expectation
value of its n-th power (n not necessarily an integer), (x") = F.
The MaxEnt solution is

1 "
P(x|A) = Z(k)e , 49)

and we wish to determine A as a function of F. For this, we
use the CVT with a single trial function v(x),

(V') = ) f'(x)) = An(o)x"). (50)

Using v(x) = x, we get

1
A= —. 51
F 5D
To check this result in an alternative way, we can explicitly
compute the partition function

Z() = / dxe ™ = 17V"T(1 + 1/n) (52)
0
and apply Eq. (4),

1
— =F, (53)

ad
S | )L—l/n —
oA n( ) ni

which leads, again, to Eq. (51).
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C. Drawing spheres from two boxes

Consider the following statistical problem. We have two
boxes, each filled with a mixture of spheres of different
volumes. For the first box, we know the average volume of
a sphere is V; and the average radius is R;. If for the second
box we happen to know the average radius R;, can we estimate
the average volume V,?

We model the distribution P(r) of either box as a MaxEnt
distribution with known (r3),

| I
P(r|)) = Z()»)e O(r), (54)
with the parameter A completely characterizing a box. The
motivation for this model could be that the volume of a partic-
ular sphere V (r) = (477 /3)r* should completely characterize
the chances of it being picked out of the box.
Use of the CVT gives

v(0)
zZ0y

(V') = 31 {(r)r?) = (55)
and combining the results from using v(r) = r and v(r) = r2,
we get

1

=g (56)
2(r) = 30(r*). (57)

From the fluctuation-dissipation theorem [Eq. (18)],
vﬁ—mvﬂz—%vx (58)

and then, replacing (r*) and (r®), we obtain a differential
equation for (r),

d
(ry = —SAa—A(r). (59)
The solution is
(r) = Ax71P = AG()D'7, (60)

where A is an integration constant, independent of A. The
information we have on the first box, namely (r3); = (3V; /4m)
and (r); = Ry, fixes A to be
Ry
A= —————,
OV, /4m)l/3

and then, given R, = (r), for the second box, we get its
expected volume,

(61)

3
w=mmawn=%(%). (62)
This solves our question in the affirmative. However,
Eq. (62), as every MaxEnt prediction, is not a logical deduction
but a plausible inference and, therefore, not guaranteed to be
true beforehand. If we replicate this experiment (in real life or
through a computer simulation) and find that A differs for two
boxes, and this means we have learned something: We did not
include all the information needed to describe the contents of
the box (in more precise terms, r3 is not a sufficient statistic for
the problem). In other words, it would mean the assumption
of Eq. (54) is at fault; that is, the chances of drawing a sphere
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depend not only on the volume of the sphere but on other
factors, such as the remaining contents of the box.

If we are interested in the exact value of the constant A, we
can compute (r) explicitly as a function of A, obtaining

A :)J/sfooodr're_MB _res
Jo~drert T 3T(4/3)]

This, however, was not needed for our problem, as A was
“measured empirically” using the first box. It is interesting to

note that
_ 1 dm 4
(V)= <_3A3> ER (r)’, (64)

which means that, contrary to a naive intuition, the expected
volume is larger than the volume of a sphere with the expected
radius by a factor (1/3A3), approximately 2.58. This is because
the expected volume (V') is more sensitive to drawing a sphere
with large radius (due to the cubic dependence) than the
expected radius (r).

VI. CONCLUSIONS

We have derived a general theorem, Eq. (12), connecting
the values of Lagrange multipliers in MaxEnt inference to
expectation values related to an arbitrary trial function. This
theorem provides for some particular cases an alternative
“shortcut” to the use of Eq. (4) involving the logarithmic
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derivatives of the partition function, which leads to a system
of nonlinear equations. For these cases, our result provides
the corresponding linear system, which could be applicable in
many problems when the appropriate expectations are known.
Equation (12), which, in particular cases, reduces to the hyper-
virial relations of statistical mechanics and to the expression
for the temperature in the microcanonical ensemble obtained
by Rugh and generalized by Rickayzen, is just a consequence
of the maximum entropy formalism for probabilistic reason-
ing. Therefore, its validity is independent of ergodicity con-
siderations or equal a priori probabilities for the microstates
in a thermodynamic system, even of the existence of such
thermodynamic system: It is valid whenever we have reasoning
under incomplete information provided as expectation values.
We show also that this equation is equivalent to the maximum
entropy condition itself (or, in Fisher statistics terminology,
to the existence of a sufficient statistic). Therefore, from the
point of view of frequentist statistics, Eq. (12) can become an
alternative tool for the estimation of parameters in any proba-
bility distribution with a sufficient statistic. Three examples in
statistics illustrate the use of the CVT in different scenarios.
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