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Abstract.  We study the deterministic spin dynamic of two interacting magnetic moments with 

dipolar interaction under the presence of an applied magnetic field, by using the Landau-

Lifshitz equation with damping term. Due to the two kinds of interactions, two time scales 

appear, a long time scale associated with the dipolar interaction and a short time scale 

associated with the Zeeman interaction. We found that the total magnetization is not conserved 

and it strongly depends of the control parameters. 

1. Introduction 

The dynamic of interacting magnetic particles which are considered as monodomains is important to 

model devices for spintronic [1]. The understanding of some magnetic properties, such as hysteresis 

loops, magnetization reversal, zero field cooling (ZFC) and field cooling (FC) behaviour are 

fundamental to model a magnetic system to obtain, for example, magnetic susceptibility or 

magnetoresistance; therefore, a detailed study of a simple interacting magnetic system is quite 

important and in order. 

The standard approaches to study the dynamics of the magnetization reversal are the Landau–

Lifshitz (LL) [2] or the Landau–Lifshitz–Gilbert (LLG) equation [3]. Nonlinear time dependent 

problems in magnetism have already been studied in many cases, and an account of the state of the art 

can be found in Reference [4]. A particular case of the Landau-Lifshitz model, the chaotical behaviour 

of the magnetic moment for an anisotropic magnetic particle in a parametric magnetic field is reported 

in reference [5]; moreover, the nonlinear aspects of a magnetic particle under circularly polarized field 

is reported in reference [6] and a perturbation technique in order to solve the LLG equation, for this 

problem is developed in the reference [7].  

From a theoretical point of view, analytical solutions of the LL or LLG equations are difficult to 

find due to the nonlinearity of these equations, and only in few cases they have been obtained, as for 

example in the problem of a magnetic particle with uniaxial anisotropy in the presence of an applied 

magnetic field when the easy axis is parallel to the external field [8]; analytical solutions for different 

orientations of the easy axis respect to the magnetic field vector and in absence of damping can be 

found in references [9–10]. When the magnetic system is subjected to short field pulses such that its 
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dynamics is fast enough, then the dissipative effects can be neglected [9]; in this context recently was 

analyzed the dynamics of two interacting magnetic nanoparticles in presence of an external magnetic 

filed, in absence of damping, in the framework of LL equation [11] and it is found that the enveloped 

function of the modulus of total magnetization is not a constant.  

In the present work, we analyze in detail the deterministic behavior of two interacting magnetic 

particles, via dipole-dipole interaction, in the presence of an applied magnetic field; we consider 

different regimens of the parameters for understanding corresponding magnetic behaviors. We also 

analyze the dissipative and nondissipative situation. We find that the absolute value of the total 

magnetization is not conserved; furthermore, for the non dissipative case it is a fluctuating function of 

time, with a strong dependence on the strength of the dipolar term. In the dissipative case there is a 

transient time before the total magnetization reaches its constant value. Also a scaling law for this 

transient time as a function of the distance between the magnetic moments and the phenomenological 

damping coefficient is found. The paper is arranged in the following way: In the Sec. 2 the theoretical 

model is described. In the Sec. 3 the numerical results are discussed. Finally, the conclusions are 

presented in Sec. 4. 

2. Theoretical model 

Let us consider a system of N magnetic particles and assume that each particle can be represented by a 

magnetic monodomain. The temporal evolution of this system can be modeled by the LL equation and 

it can be written as: 

( ) ( ) ( ) ( )( )i i i i i i

ieff eff
t t t t

m
m m H m m H&

γ λ
γ= − × − × ×

              (1) 

where 
im  is an individual magnetic moment with 

( )1,...,i N=
, q&  represent the time dependent 

derivative of q, γ is an effective gyromagnetic ratio, and λ is a phenomenological damping coefficient. 

The corresponding i-th effective field, 
i

eff
H

, is given by  i

i

eff m
H H= −∇

, where H  represents the 

appropriate Hamiltonian for the system. 

 In this work we analyze two interacting magnetic particles including dipolar interaction in the 

presence of an external field; therefore, the Hamiltonian has the following form: 

( )( )
2

3 1 2 3 1 2

1

ˆ ˆ3i

i

d dH m m m m n m nH − −

=

= − ⋅ + ⋅ − ⋅ ⋅∑
,              (2) 

where H represents the external magnetic field, d the fixed distance between the two magnetic 

moment and n is a unitary vector along the direction joining the two particles. We note that 

corresponding equations have a nonlinear coupling due to the interaction terms and the system 

presents two time scales depending on the magnitudes of the magnetic interactions, because they are 

of different nature. Also, because the individual magnetization magnitudes are constant, the global 

dynamics of each magnetic moment is reduced to a spherical surface. Notice that due to the dipolar 

interaction, the total magnetization for a two magnetic interacting particles in absence of damping is 

not stationary [11]; this condition is also fulfilled in our case. In order to elucidate it we can write the 

equation (4) in the Gilbert form [3]: 

( )( )3 3 ˆ ˆ3i i k k i i

G Gd dm m H m m n n m m& &γ α− −= − × − + ⋅ + ×
       (3) 

with 
( ) ( ), 1,2i k =

 such that i k≠ . The LLG equation (3) is implicit with respect to, 
im&  and it can be 

transformed in the equivalent normalized Landau-Lifshitz form where Gg g l= +  and G ma l= . 

Therefore the dynamic of 
1 2= +M m m , obeys the equation 

( )( )3 ˆ ˆ6G GdM M H M n n M M F& &γ α−= − × + ⋅ + × +
.                (4) 

The equation (4) describes the behavior of an equivalent single magnetic moment, with uniaxial 

anisotropy with easy axis n̂ , and in the presence of both the applied magnetic field and an extra 

fluctuating term, 
{ }1 2 1 2, , ,F F m m m m& &=

, which is a function of 
1m  and 

2m , and their corresponding time 
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derivatives. This extra term can be interpreted as a time dependent fluctuating field by proper change 

of units. Moreover, from equation (4) it is clear that the magnitude of the total magnetization is not 

conserved but fluctuating in time. Hence, when the damping coefficient is taking into account, the 

significant discrepancies are that equation (4) shows a dissipative term involving the total 

magnetization and that an extra field structure appears, depending on time derivatives of the individual 

magnetizations. Therefore, the dynamic behavior of the total magnetization of the system considering 

damping or not will be radically different in each situation. In the next section, we will show this 

behavior. 

3. Numerical Results 
In order to integrate numerically the equations (4), we express them in a dimensionless form; for this 

purpose we introduce the following new variables ,j j
me m=  0 ,eff eff Hh H=

 
( )0t Hτ γ=

, where 0H  is 

the magnitude of a reference magnetic field; we define the total dimensionless magnetization of the 

system by ME M= . The initial conditions for the magnetic moments are selected as follows: 

( )1
(0.1, 0.1,0.989949)0 = -e

 and 
( )2

( 0.1,0.1, 0.989949)0 = - -e
; notice that these initial conditions are such that the 

total magnetization vector vanishes. Besides, the fixed parameters are chosen to be 0
ˆ/ 5H= =h H z  and 

( )ˆ 0.382,0,0.924=n
. We assume that the two magnetic particles are identical, and use a fourth-order 

Runge-Kutta method to solve numerically the equations of motion. Among many possible cases, we 

show two: i) when the dipolar field term (DF) is more important than the external magnetic field term, 

and ii) when the external magnetic field term (MF) is more important than the dipolar term. The 

numerical values of the parameters in the DF case is 
( )3 3

0 10m d H =
, in the MF case is 

( )3

0 1m d H =
. 

 

 
(a) 

 
(b) 

 

Fig. 1:    Magnitude of the total magnetization, E, as function of time at 0.01λ = :  

(a) for 
( )3 3

0 10m d H =
; (b) for 

( )3

0 1m d H =
. 

Figure 1 shows the modulus of total magnetization as function of time for different situations. In 

particular, Fig. 1 (a) is for DF and Fig. 1 (b) is for MF at 0.01λ = . In analogy with the nondissipative 

case, the total magnetization is not conserved and according the relative importance of each 

interaction, the system evolves at different time scales [11]. However, in this case we found that there 

occur two different stages in the functional form of the magnetization with respect to the time. Firstly, 

the magnetization is a fluctuating function of the time, and in the final step it remains constant. 

However, in this case we found that there occur two different stages in the functional form of the 

magnetization with respect to the time. Firstly, the magnetization is a fluctuating function of the time, 

and in the final step it remains constant. When the dipolar term is the most important one, we observe 

that the magnitude of the total magnetization has a local maximum at 0.05t = , then it decreases and 

after a local minimum it increases again and takes the highest constant value, which corresponds 
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precisely to the highest value allowed by the theory, that is, the sum of the two individual magnetic 

moments. In the MF case we observe that the total magnetization magnitude present rapid fluctuations 

before reaching the same constant highest value. Notice that the time behaviour of the total 

magnetization strongly depends on the interaction type strengths. The great dissimilarity of the 

nondissipative case with respect to the dissipative case is that in the latter the total magnetization 

attains a constant value after some time, which depends on the interaction strength ratio. 

4. Conclusions 

The spin dynamic of two interacting magnetic moments using the Landau-Lifshitz equation 

considering dipole-dipole interaction under the presence of an applied magnetic field was analyzed. 

Due to the two kinds of interactions present in the problem, two time scales arise: a long time scale 

associated with the dipolar interaction and a short time scale associated with the Zeeman interaction. 

The dynamical behavior in the dissipative case the total magnetic moment has a critical time when it 

reaches the saturation value; and this time strongly depends of the control parameters of the system. 
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