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Nonlinear magnetic excitations in the Heisenberg magnetic system CsNiF 5, when an antiferromagnetic
interchain interaction is present between two neighboring easy-plane ferromagnetic chains, are studied.
Using a two-lattice model and defining coherent states on each site for the two chains the discrete
coupled equation for the averages of the spin components are given. In the easy-plane limit it is found
that three kinds of static magnetic excitations can exist, depending on the value of the antiferromagnetic
interchain exchange interaction J,. The inclusion of this antiferromagnetic interchain interaction makes
the problem of the nonlinear magnetic excitations appear in a new light.

1. Introduction

The magnetic salt CsNiF; is a system widely investigated due to the striking nonlinear
magnetic excitations in the easy-plane ferromagnetic chains of spins defined ignoring the anti-
ferromagnetic interaction present in the three dimensional system. However, systematic
deviations between theory and experiments attributed to the antiferromagnetic interaction
between chains have been found up to several K above the 3D ordering temperature [1].

Our scope is to investigate qualitatively the nature of the nonlinear magnetic excitations
when we include this antiferromagnetic interchain interaction for the very simplified case
of two neighboring ferromagnetic easy-plane chains. In fact in the three-dimensional case
each chain is surrounded by six chains [2].

Starting from a spin-Hamiltonian for the two chains the averages of the spin components
are expressed in terms of well defined angles and amplitudes, on each site and on each
chain, using the coherent state formalism which proves to be very adapted when we consider
the semiclassical limit (S — o) and transform the spin operators into operators of two
independent harmonic oscillators (Schwinger operators). However, as the spin for CsNiF,
equals one, this model demands the inclusion of quantum effects. The reason for our classical
approach is again simplicity. We are interested in finding the nonlinear excitations usually
described by the sine-Gordon model for the case of noninteracting chains, when an
antiferromagnetic interchain interaction J, is present,

2. The Model

We take the chains, denoted by A and B, parallel to the z-axis, and the y-axis intersects
perpendicularly the chains. The x-axis perpendicular to the y—z plane completes the reference
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system. Taking the applied magnetic field along the x-axis the Hamiltonian is

H o= Ay + Ay + A, (1
where
Ha= =Jr L SanSawes T DY (SA) + gueH Y S5, )
n o n n
%B = —Jl Z SB,n ’ SB.:H—J + DZ (Sl.;.n)2 + g#BHZSi\!n’ (3)
n,d n n
Cy{(i)nl = JZ Z SA.n ’ SB.n . (4)

Here J; > 0 is the nearest-neighbor intrachain exchange interaction in the chains, Jy >0
the interchain exchange interaction between the chains, D > 0 the anisotropy parameter,
g the g-factor, H the intensity of the external magnetic field, and up the Bohr magneton.
Label n represents the lattice sites and § = +1.

We now make use of the Schwinger boson operators linking the spin operators with two
independent bosonic fields.

For lattice A,

St =a'h. S~ =b'a, S =1(a'a — b'h) (5)
and for lattice B it is convenient to use the conjugated transformation
St =bla, S™ =da'bh, §7 =4 (ata - b'h), (6)

since the chains interact antiferromagnetically. In both cases there is a contraint on the
total Bose occupation ata + b'h = 28,
The Hamiltonian now read

J
v 1 ¥ + + +
H = Z {_ ? aA,mbA,mbA.m-*-laA.m-Fl + b,\.maA.lnaA,m+1bA.nx+1

m

1
+

b b
? (n‘; m - Ha, m) (”1 m+1 — Ha, m+1):|

Ji
f t # t
- ? ag, wbp. wbh, ms 10y ey + b, mlts, A, m 10, mt1
1
a b a b
+ 5 (nB,m — hg, m) (”B.m*l — hg, m+1)

D
+ Z [(naA m n.IZ\. m)z + (n?l. m an. m)z]

gugH
- ;:*' [(at\ mb/\. nt + bj\ mla, m) + (a:; mbB. m + b}g, mds, m)]

1
+ JZ [5 (aL mb/\. ma:-}. mbll. m + b:\ maA. mb:;. maB, m)

1
- Z (n‘/lk m n’/,\. m) (ntlli. m ”;’3. m):l} . (7)

Here n® = ata and n” = bh.
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We take the extremal state |0) of this magnetic system as that with all the spins pointing
parallel to the magnetic field (x-axis) in chain A, and the opposite for chain B. In the
Schwinger representation any quantum state is defined giving the excitation state of the
independent harmonic oscillators associated to each site; then |0 corresponds to vacuum
states of all the harmonic oscillators. Following Glauber [3] we define the displacement

operators
D(:x\'i) = exp (‘xvia:i - “Tia\'i)ﬂ (8)
D(B,) = exp (B,:b]; — b s

to introduce the field coherent states

}1viﬁvi> = lOC\,i> ':B\‘i> = D(d”) D(ﬁu) ‘0> H (9)

where v refers to the two chains, and i to the chain sites.
Taking the classical limit of the spin variable, i.e. S — o, these field coherent states can
be expanded in terms of the eigenstates of the harmonic oscillator number operators

o> = exp (— 3t S () ()2 () | (10
n=0

1By = exp (— 3 B%B.) 2 (B (nh)™ 12 in) . (11)
n=0

In this way the states |x,;> and |8,;> are, respectively, the eigenstates of the annihilation
operators a,; and b,; of the independent harmonic oscillators.
We now write the general coherent state of the system as

8> = 1l . (12)

from which, using the above properties, the average energy {afi| # |offi> can readily be
obtained.

The correspondence between the coherent states and points in the complex plane permits
a physical interpretation of each pair of points in the complex plane. In fact, writing

%, = (%) exp (ip (),
Bui = o(B,) exp (ip(B.) .
the averages of the spin components at site i of chain v are
(ST = elxy) e(B,) cos (D)),
(8T = olay) o) sin (D), (14)
(85 = 1(0%() — % ()
with @,; = ¢(2,;) — @(f,). We have then that to some selected pair of points inside the

(13)

circle of radius ]/75 in the complex plane there corresponds one point in the spin space,
since the constraint now reads ¢(x,) — ¢*(f,;) = 2S. This permits to clasify some
configurations of the spins in terms of the relative position of the complex numbers of the
pair in the complex plane. For example any easy-plane configuration corresponds to « and
f in the circumference of radius ]/E, any y—z configuration corresponds to o and f forming
right angles, etc.
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Our interest is the easy-plane case, for which the average energy of our system is
@fl A faf) = —Jy X [cos (BF., — &) + cos (PE, | — F)]
— gupH ) [cos &) + cos @] + J, ¥ [cos (8> + BY)]. (15)

The stationary configurations are obtained minimizing {.#') with respect to @2 and @,
we obtain in this way the following two coupled nonlinear recurrence equations:

Jysin (@2 — @A) — J, sin (@8, , — &%)

+ gugH sin @3 — J, sin (@2 + @8 =0,

Jysin (@) — @B_ ) — J, sin (7, — @B

+ gupH sin @ — J, sin (¢% + & = 0.

Defining now

upf = sin (2 — @A), (16)

ul = sin (®f — o8_ ), (17
we get the four-dimensional mapping

Upyy = up + hsin & — Jsin (@ + %),

up., = ub + hsin @ — Jsin (@2 + @),

@, = @) + arcsin [u} + hsin & — Jsin (@} + o8],

@3, = OF + arcsin [ul + hsin ¥ — Jsin (@8 + ¢P)], (18)
where J = J,/J, and h = gugH/J,.

3. Results and Discussion

The structure of this map can be understood in terms of the fixed points and their
stability. We restrict the angles to the interval between 0 and 2z The fixed points are

U (ny 0
Py (n) = “i;l(:) = n?f © on=01,2, (19)
O ) nm
0
upy 0
Py, = MPAZ = |arccos —| . (20)
(23N 2J
o arccos ——
2J

In Fig. 1 we show the bifurcation diagram for these equilibrium angles with respect to
J where we put h = 0.1 and define * = @® = &. The fixed points P, (n) are independent of
the parameters, in contrast with Py, (spin-flop point) which is defined up to h/2J = 1.
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Fig. 1. Bifurcation diagram for the equilibrium angles as a function of J. Here /i = 0.1 and &* = B =9

Regarding the stability we found that for the case of the fixed points P;(n) with even n,
two eigenvalues depend on 4 and J, whereas the other two depend only on A. For the case
hj2J > 1 all these points are real, two of them being greater than one and the others less
than one so the Py, (n) branch is unstable. As h/2J approaches one, two eigenvalues are
close to one and the other two remain unaltered, one being greater than one and the other
less than one. If h/2J = 1 there are two eigenvalues equal to one (parabolic), and if h/2J < 1
they are on the unit circle (elliptic). For odd n all four eigenvalues are always complex and
on the unit circle. On the other hand, all the Py, branch corresponds to a saddle-point-like
unstable equilibrium point for each allowed value of 4 and J.

The static configurations of the N spins of chain A projected on the plane (u*, ®*) from

the trajectory on the (u*, u®, #*, ®B) phase space, are presented in Fig. 2 (the same we have
for chain B).

=374 -157 0 157 74
¢
Fig. 2. Static configurations of the N spins of chain A projected on the plane (u*, &*) from the

trajectory on the (u*, u®, @A @) phase space (the same we have for chainB). A KAM
(Kolmogorov-Arnold-Moser) behavior is observed

35*
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Fig. 3. Static chain configuration
for different values of J. a)
J = 0.02, b) 0.08, ¢) 0.18

A KAM behavior is observed, in fact periodic, quasiperiodic, and chaotic trajectories coexist
in the phase space. There are closed orbits about elliptic points at (0, 0) and (0, ). There is a
zone where orbits break to give rise to other elliptic fixed points of period six (the six small
islands); finally we get into a chaotic region, far from the origin, where orbits disintegrate.

The static chain configuration for each zone is shown in Fig. 3 for given initial conditions
and J = 0.02, 0.08, and 0.18, respectively. Three well defined kinds of structure can be
obtained. Defining @, — @, as the opening angle and 4 = cos (®, — ®,) we have for
J < h/24 the spin forming a wave that oscillates pointing opposite to the magnetic field.
The number of oscillations increases linearly along the chain. ForJ = h/24 the configuration
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Fig. 4. Density of oscillations and solitons as a function of J for two values of the magnetic field h
and identical initial conditions

can have full-turn oscillations in a very stochastic way, breaking its linear characteristic.
For J > h/24 oscillations point parallel to the magnetic field and also there is a linear
increase of the number of oscillations as we go along the chain. Fig. 4 shows the density
of oscillations and solitons as a function of J for two values of the magnetic field h and
identical initial conditions. We see that there is a structural phase transition around
J > hj24. The interphase is larger as we increase J.

4. Conclusion
The main conclusion of our results is that the interchain antiferromagnetic interaction
plays an important role in the theory of very low temperature excitations in magnetic chains.
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