Ab-initio study of Ti₃Si_{0.5}Ge_{0.5}C₂ under pressure up to 80 GPa

Gonzalo Gutiérrez Departament of Physics Universidad de Chile.

gonzalo@fisica.ciencias.uchile.cl http://fisica.ciencias.uchile.cl/~gonzalo

In collaboration with

}

University of Chile

Griselda García

P. Catholic University of Chile

Bouchaid Manoun Surendra Saxena

CESMEC, FIU

gg/SMEC, April 05

Outline

1. Max Phases

- 2. Computational method
- 3. Results
 - -Structural properties: energy volume, cell parameters-Electronic porperties: Bands structure, DOS
- 4. Conclusions

MAX phases

Ternary layered compounds

Ex.: Ti_2AIC , Ti_3SiC_2 , Ti_4AIN_3

gg/SMEC, April 05

MAX phases properties

Best attributes of metals and ceramics

Like metals: Thermal and electrical conductors Readily machinable Plastic at high temperatures

Like ceramics: Elastically rigid Lightweight Mantain their strengths at high temperature

M_3AX_2 unit cell

- Hexagonal cell,
 a ~ 3 Å
 c ~ 17 Å
- Two formula unit per unit cell
- Like TiC, but interleaved with layers of A atoms

$Ti_3Si_{0.5}Ge_{0.5}C_2$: structrure

Hexagonal cell,
a ~ 3.079 Å
c ~ 17.77 Å

- Bulk Modulus B=183 +/- 4 GPa (APL, Manoun et al, (2004)).

Computational method

-DFT with LDA

-SIESTA code: strictly-localized numerical pseudoatomic orbital

-Norm-conserving pseudopotential, fully separable form

-Double zeta single polarized (DZP) basis set

-7x7x2 k points in the Brillouin zone (Monkhorst-Pack mesh)

-For high pressure, hydrostatic pressure was applied, using variable cell approach within Parrinello-Rahman method.

gg/SMEC, April 05

Energy v/s volume

Lattice parameters v/s pressure

Structural changes under pressure

	0 GPa	80 GPa
Distances		
Ti-Ge	2.68	2.42 (-10%)
Ti-Si	2.63	2.38 (-9.6%)
Ti-C	2.11	1.93 (-8%)
Angles		
Ti-Ge-Ti	99.4	98.8
Ti-Si-Ti	97.9	96.4
Ti-C-Ti	87.9	89.4

Bands structure at 0 and 80 GPa

Bands structure almost the same

Dos: the density of states at the fermi level decrease

gg/SMEC, April 05

Charge density

gg/SMEC, April 05

Depto. of Physics, Univ. of Chile

- There is no major changes up to 80 GPa. It is very likely that the good properties at O GPa remain under pressure.
- 2) There is almost no anisotropy under compression, in contrast to the experiment.
- 3) Physical properties which depend on the density of states at fermi level could change, because the decrease of DOS at the fermi level under pressure.

Acknowledgments: Grant from Fondecyt, Chile. Computer time of MAIDROC at FIU.

Ti₃SiC₂: band structrure

$$Ti_3SiC_2$$
: dos

Ti_3GeC_2 : dos

$Ti_3Si_{0.5}Ge_{0.5}C_2$: dos

Structural changes under pressure

	0 GPa	80 GPa
Distances		
Ti-Ge	2.68	2.42 (-10%)
Ti-Si	2.63	2.38 (-9.6%)
Ti-Ti	2.88	2.72 (-5%)
Ti-C	2.11	1.93 (-8%)
Angles		
Ti-Ge-Ti	99.4	98.8
Ti-Si-Ti	97.9	96.4
Ti-Ti-Ti	117.5	119.4
Ti-C-Ti	87.9	89.4

gg/SMEC, April 05

Charge density

gg/SMEC, April 05