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GIBBS’ PHASE RULE REVISITED
G. Gutiérrez!

Gibbs’ phase rule and related properties of phase diagrams are obtained using the simple combinatorial methods
of associating a graph to each thermodynamic system. We think this approach allows a deeper understanding
of the geometric roots of this rule.

1. Introduction

Gibbs’ phase rule [1] is a result which was obtained from very general properties of the fundamental
equation and equilibrium conditions of a thermodynamic system. Its deduction in modern thermodynamic
textbooks (see, e.g., [2]) could be phrased as follows. Given a system with r components and M coexistent
phases, there are r + 2 intensive parameters, T, P, u, ..., iy, each of which being constant from phase
to phase. In each of the M phases, there is a Gibbs-Duhem relation among these variables. These M
equations reduce the number of independent parameters to (r +2) — M and the degree of freedom f is then

f=r—M+2.

The above equation is proved by solving a system of equations and using the relation between the number
of equations and variables, as is usually done in linear algebra.? However, because we are dealing with
thermodynamic surfaces (and not only planes), the above argument cannot be considered a rigorous proof.
In fact, there are several papers that emphasize this point, although their approach is different from ours
(see [3] and the references therein).

The objective of this paper is to discuss Gibbs' phase rule from a different viewpoint, based on the fact

that Gibbs’ phase rule is not a consequence of analytic properties of the fundamental equation, but of the
combinatorial properties of phases and their coexistence.

2.Gibbs’ phase rule for substances with » components

In classical thermodynamics, the state of a substance with r components is characterized by the funda-
mental equation U = U(S,V, Ny,...,N;). The Legendre transform with respect to certain variables leads
us to different thermodynamic potentials. The stability conditions constrain these potentials such that they
are convex functions of their extensive variables and concave functions of their intensive variables.

In particular, if we apply the complete Legendre transform to U = U(S,V, Ny, ..., N;), we obtain the
thermodynamic potential U = U[T, P, y1, . .., lir|. Using the Gibbs-Duhem relation, this is equivalent to
an r + l-variable potential u, = u.[T, P, p1, ..., tr—1), which can be represented by a hypersurface that
exists in r + 2 dimensions3.

The thermodynamic equilibrium conditions between systems I and II are given by the thermal equilibrium
T' = TY, the mechanical equilibrium P' = P!, and the equilibrium with respect to material flow, p' = p'l.
In the case of a substance with different phases, the system can be considered to be composed of simple
thermodynamic subsystems separated by nonrestrictive walls. Thus, each different phase has an associated

lFacultad de Fisica, P. Universidad Catélica de Chile, Casilla 306, Santiago 22, Chile, e-mail: ggutierr@lascar.puc.cl.
2Using this method, it is proved that two planes intersect in a line, three planes at a point, and so on.
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thermodynamic potential, and the coexistence of these phases can be treated in the same way as the balance
among thermodynamic systems.

For each of these different phases i of the substance, there is a different equation pt. These different
phases coexist if and only if they have the same values for each of their r + 1 intensive variables T, P, and
By« ooy fr=1.

In this form, the condition for the coexistence of M phases for a substance of r components can be
reduced to the two following axioms:

Axiom 1. If the phases fy,..., f; coerist, then each pair f;, [ coezists for a hypersurface of dimension
less than the dimension of the hypersurface which represents the phase.

Axiom 2. If two phases f;, f; coincide in an entire region of the same dimension, then fi=1Ff;.

3. The phase graph of the system

Here, we associate a graph to each of the r components (to review graph definitions, see (4]), called the
phase graph G(r), in the following way:

To each phase f;, we associate a vertex v;.

To each border between f; and f; (the hypersurface where f;, f; coexist), if it exists, we associate
the edge (v;, v;) that connects vertices v; and v;.

Phase graphs have the following simple properties.

Property 1. Each graph G(r) is composed of complete subgraphs K, j € {1,...,n}, whose maximum

number of vertices j is n = r + 2 and corresponds to the number of vertices of the simplex [5] in (r + 1)
dimensions®.

Property 2. For each of these complete subgraphs K j of G(r), let us define
deg fr(K;) = (r +1) — dg(Kj),

where dg(K;) = j — 1 is the common degree of the vertices of K;. Then deg fr represents the dimension of
the hypersurface where f;; - - f;; coexist (this follows immediately from Axioms 1, 2, and Property 1).

A number of physical consequences can be deduced from G(r). We give some of them here and illustrate
them with two examples.

1. From Property 1, the maximum number of phases that can coexist in a system with r components

is 7+ 2. In this case, deg fr(K,42) = 0, that is, the r + 2 phases coexist at a single point called the
“(r + 2)-point.”

2. In general, where M phases coexist (the case K ), using the fact that dg(Kp) = M — 1, we have
deg fr(Km)=1—- M + 2,

which is nothing less than Gibbs’ phase rule for a pure substance where deg fr(K ) represents the
thermodynamic degree of freedom.

3. Each complete subgraph K, of G(r) corresponds to a different physical condition of the system.
Thus, it can be the case that the system has many (r + 2)-points, (r + 1)-points, etc.

Examples:

(a) In particular, let us consider the case of water. It is a substance with one component (r = 1). The
associated graph G(1) is shown in Fig. 1. It is composed of the complete subgraphs K;, K,, K3, which
correspond to the coexistence of one, two, or three phases, respectively. There are 7 triple points (the seven

4In a hypersurface of dimension [, the simplex has [ + 1 vertices.
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vapor I II

Fig. 1. The graph of HyO.

K3’s in Fig. 1), 14 cases of the coexistence of two phases (the fourteen K,'s) and 8 phases (the eight K,’s
or vertices).

(b) For a substance with two components, let us assume that there are four phases in equilibrium among
themselves. Then we can say that there can be 4 different triples of coexisting phases with 1 degree of
freedom, 6 pairs of coexisting phases with 2 degrees of freedom, and 4 different phases with 3 degrees of
freedom. In general, this corresponds to considering a simplex of M vertices and counting the number of
hyperplanes of lower dimensions that it has. It is known (see, e.g., [5]) that this number is given by

rary = (311).

where d is the dimension of the hyperplane and k is the number of faces, with k < d. In the previous
example, the dimension of the hyperplane is d = 3, so we obtain the different values from fx(T3).
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